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Abstract

An advance in the development of smart munitions entails autonomously modifying

target selection during �ight in order to maximize the value of the target being destroyed.

Target identi�cation and classi�cation provides a basis for target value which is used in

conjunction with multi-target tracks to determine an optimal aimpoint for the munition.

A unique guidance law can be constructed that exploits attribute and kinematic data from

an onboard video sensor. This thesis develops an innovative path planning algorithm that

provides an obstacle avoidance function while navigating the munition toward the highest

value target. The foundation of this path planning method is found in the principles of

minimum e¤ort control optimization. Results demonstrate the ability of the path planning

algorithm to determine a path for the munition to follow which is both stable and feasible.
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A MINIMUM EFFORT CONTROL APPROACH

TO GUIDED MUNITION PATH PLANNING

I. Introduction

Over the past decade, smart munitions have played an increasing role in modern

conventional warfare. Due to the impressive success of these guided munitions, recent

e¤orts have focused on boosting the agility and e¢ ciency of this class of weapons. One

way this performance boost can be achieved is by allowing autonomous in-�ight retargeting

of the munition such that its �ight terminates at the most valuable target in the scenario.

This increased capability does not, however, come without its own cost. The munition

must now be able to ensure it avoids obstacles that appear in the path to the new target. In

addition, once an obstacle-free path is determined, a method must be realized to generate

an optimal set of control inputs to navigate along this path.

Despite this desire for greater autonomy and capability, current guidance algorithms

typically lack the ability to modify target selection after launch or to avoid obstacles

identi�ed by the vehicle�s onboard sensors. Standard guidance algorithms simply force

the vehicle to �y along the unobstructed line-of-sight (LOS) trajectory between the vehicle

and its target while maintaining the predetermined target assignment. In a multiple-target

scenario, the terminal waypoint may shift dramatically when the target tracker determines

that a new target has the highest value. Any attempt at achieving online retargeting

creates a mandate for the guidance algorithm to perform an obstacle avoidance function

whenever the terminal waypoint moves. Furthermore, given that mobile friendly and

neutral objects may be classi�ed as obstacles, this avoidance function will also be invoked

as these objects move about the battle�eld. Thus, the need to formulate a guidance

algorithm capable of driving the vehicle to the most valuable target still exists.

The basic scenario is shown in Figure 1.1. Initially, since the line-of-sight path

between the munition and the target is blocked by a mountain, a path is planned to guide

the munition around the obstacle and impact the target. This planned guidance path is
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Figure 1.1 Notional scenario with contour map of a mountain - 1 target in view, 1
obstacle in LOS

illustrated by the dotted line between the munition and the troop transport. However,

once the munition �ies around the side of the mountain and a new target is detected,

the entire scene must be reevaluated from the viewpoint of the munition. As a result of

this evaluation, one of the potential targets is declared to have the highest value and the

munition must determine a new path in order to engage the newly designated target. A

depiction of this endgame scenario is shown in Figure 1.2, where the solid red line indicates

the path that has already been �own and the munition has determined that the value of

the tank is greater than that of the troop transport.

Some researchers have explored nonlinear model predictive control (MPC) as the

basis for a method to attain this obstacle avoidance capability [9, 15, 16]. The crux of

this approach lies in placing limits on the extent to which the vehicle state (typically

position, velocity, acceleration, and other navigation-related states) and control input are

allowed to deviate from their nominal values. A constrained optimization problem is

then solved in order to generate an input that will �y the vehicle along the optimal path

between a set of known waypoints. In general, e¤orts involving this approach have been

limited to a 2-dimensional world. When a third dimension is even considered, the problem
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Figure 1.2 Notional endgame with contour map of a mountain - 1 new target found,
target designation updated
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is reduced back to a 2-dimensional setting in which it is assumed that the vehicle will

simply travel either over or around an obstacle, thereby eliminating the opportunity for

cooperative motion between the horizontal and vertical planes of the vehicle. For example,

if an air vehicle attempts to �y over an obstacle, this MPC approach will maintain the

current heading while commanding changes to altitude. Although the desire to extend

this approach to a full 3-dimensional world is apparent, the speci�c manner to accomplish

this evolution is not as obvious.

Other researchers have made e¤orts to utilize a circle-line-circle (CLC) approach to

navigating a set of waypoints [1�3,5,8,20]. Essentially, this method constrains the vehicle

to �y along the LOS between successive waypoints and attempts to compute the time to

begin the turn to the next straight-line segment based on the assumption that the air

vehicle will execute all heading changes at a constant turn rate. The �exibility of this

approach is realized by its ability to determine a minimum-time path, a path which passes

directly through the given waypoint, or any path in between these two which satis�es

the assumed system constraints. Current e¤orts in this arena have only considered 2-

dimensional problems (typically the horizontal plane). The extension of this approach

to a full 3-dimensional environment presents some interesting issues, such as the need for

additional system constraints.

A third, conceptually simple, method employs the principles of minimum e¤ort con-

trol to achieve the obstacle avoidance function. When presented with a set of potential

waypoints, this control optimization technique can readily determine the path which re-

quires the least amount of applied control energy.

All three of these control optimization methods require a set of desired waypoints as

an input to the procedure. Bearing this requisite input in mind, there remains a need for

a manner to determine these waypoints, especially when the vehicle operates in a changing

environment.

1.1 Research Goals and Contributions

Motivated by the desire to �y an air vehicle toward the highest value target within

a scene, this research attempts to generate a 3-dimensional guidance algorithm capable of
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navigating the vehicle through a set of waypoints such that obstacles are avoided in an

environment in which the designated target is prone to change. Speci�cally, a multiple-

target tracker will be created to provide the munition with information regarding the

position, velocity, and value of the various targets within the scenario. Additionally, a

path planning method will be developed to formulate a �ight path that facilitates obstacle

avoidance. These two pieces (multi-target tracker and path planner) comprise the entire

guidance algorithm. Finally, the three control optimization techniques (model predictive

control, circle-line-circle, and minimum e¤ort control) will each be utilized as the basis of

a method to determine the optimal set of control inputs required to have the air vehicle

traverse this reference trajectory.

The primary contribution of this research is the utilization of the minimum e¤ort

control optimization technique as the basis for a path planning algorithm. Although

minimum e¤ort control has been utilized for generating optimal control inputs, the notion

of using this control optimization approach as the foundation for a path planner has not

been attempted by other researchers in the navigation �eld. Secondary contributions of

this research are the attempts to extend CLC and MPC control optimization techniques

to 3-dimensional situations.

1.2 Scope and Assumptions

First and foremost, although the ultimate intention is to utilize a procedure of this

nature in online operation, the real-time operation constraint will not be imposed upon

this guidance algorithm. This relaxed approach is taken since this research still falls within

the realm of concept exploration. Given that this research is only investigating the con-

cept�s general feasibility and is not, at present, designated for application on any speci�c

airframe, the tests will be conducted using a six-degree-of-freedom F-16 �ight dynamics

model (already available in-house) in place of any speci�c munition model. Additionally,

it will be assumed that autopilots capable of maintaining commanded velocity, heading

and altitude settings are available for use with the speci�ed air vehicle model. Further-

more, in an e¤ort to reduce the complexity of the problem, it will be assumed that we

desire to maintain a constant velocity during each of the simulations. Finally, for ease
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of implementation in this early stage of concept exploration, it will be assumed that the

munition has knowledge of all the obstacles within the scene, including those that would

normally be occluded from view.

1.3 Thesis Organization

Chapter 2 presents the theoretical background information required to understand

the development and application of this guidance algorithm. Section 2.2 provides details

on target tracking concepts, to include stochastic estimation and linear Kalman �ltering

(Section 2.2.1) and types of target models (Section 2.2.2). Section 2.3 discusses various

methods of control input generation. Section 2.3.1 presents the concept of circle-line-circle

control, while Section 2.3.2 details the theory of the model predictive control method. The

basic properties of controllability matrices and Grammians are presented in Section 2.3.3

and their applicability to the theory behind minimum e¤ort control is shown in Section

2.3.4. Section 2.4 presents the basic simulation model used throughout this research.

Chapter 3 describes the development of the guidance algorithm and provides details

regarding the simulation. Section 3.2 details how the standard multi-target tracker is

modi�ed to provide the unique information required by this guidance algorithm. Section

3.3 then discusses the method implemented to generate waypoint sets for the purpose of

obstacle avoidance. Section 3.4 describes the application of the minimum e¤ort control

technique in solving the problem of selecting the optimal path from the candidate waypoint

sets. These three sections provide a concise description of the development of the entire

guidance algorithm. Section 3.5 presents the extension of the MPC and CLC control

schemes to three dimensions and then demonstrates how minimum e¤ort control is used to

generate the commands, to be sent to the vehicle�s three autopilots, based on the waypoint

information contained within the selected path. Finally, Section 3.6 details the adaptation

of the simulation model to accommodate the various innovations of this research.

Chapter 4 presents an analysis of simulation results. The guidance path selected by

the path planning algorithm developed in this thesis will be compared with the minimum

distance trajectory for that particular test case in order to illustrate the key bene�ts and

shortcomings of each trajectory generation method.

1-6



Chapter 5 concludes this research by summarizing the algorithm development of

Chapter 3 and the results obtained in Chapter 4. Furthermore, it presents recommenda-

tions for future research regarding this concept.
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II. Background

2.1 Introduction

The desire to guide an air vehicle toward a moving target immediately invokes the

need to have a method to determine the target�s state information (position, velocity, ID,

etc.). Section 2.2 is devoted to exploring the basics of target tracking. Given that most

modern target trackers rely on Kalman �ltering to provide estimates of the target�s state [6],

the details of stochastic state estimation in relation to Kalman �lters, and the details of

several classes of target models (to be used in the Kalman �lter) are presented in this

section. Section 2.3 addresses the fundamental concepts of the three control generation

methods that will be investigated by this research. A subsection on controllability matrices

and Grammians is included to assist the discussion of minimum e¤ort control. Section

2.4 presents the basic F-16 system model which provides the environment for conducting

simulations.

2.2 Target Tracking Basics

As mentioned in the introduction, the Kalman �lter is perhaps the most widely used

estimation technique in current target tracking algorithms. Though they are not generally

thought of in this fashion, for the purposes of target tracker design, Kalman �lters may be

split into two pieces. The �rst part consists of the development of the equations which

de�ne the linear Kalman �lter. This piece is well grounded in the theory of stochastic

estimation and the form of the equations generally remains the same from �lter to �lter.

The other portion of the Kalman �lter is the user-de�ned component and primarily entails

the selection of a model to describe the motion of the expected target type. Bearing this

all in mind, we now turn to the discussion of these two aspects of target tracking.

2.2.1 Stochastic Estimation and Linear Kalman Filtering. The development of

the linear Kalman �lter equations in this section is an adaptation of the material presented

in the Maybeck text [12]. This material is intended to be a summary of the key points of

linear Kalman �ltering and its stochastic estimation underpinnings. The interested reader

is directed to [12] for a more in-depth derivation of the �lter equations.
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Let us assume that we wish to estimate the state values for a linear system which

can be described by the following discrete-time state-space model (this may also be an

equivalent discrete-time model that was derived from an underlying continuous-time model

description, as shown in Section 2.4 of [12]):

x(ti) = �(ti; ti�1)x(ti�1) +Gd(ti�1)wd(ti�1)

z(ti) = H(ti)x(ti) + v(ti) (2.1)

where x(ti) is the system state vector and z(ti) is a noise-corrupted measurement vector

of the (potentially time-varying) system state at time sample ti. �(ti; ti�1) is the state

transition matrix which describes the homogeneous motion of the system state from time

sample ti�1 to ti, Gd(ti�1) is a noise weighting matrix based on the system model de-

scription, and H(ti) is the measurement matrix which de�nes the speci�c combinations of

states that are represented by the measurements. The wd(ti�1) and v(ti) terms represent

mutually independent discrete-time white Gaussian noise vectors with the following mean

and variance statistics:

Efwd(ti)g = Efv(ti)g = 0

Efwd(ti)wd(tj)T g = Qd(ti)�ij

Efv(ti)v(tj)T g = R(ti)�ij (2.2)

where Qd(ti) is the process noise covariance matrix, R(ti) is the measurement noise covari-

ance matrix, and �ij is the well known Kronecker delta function. In these expressions, the

subscript d indicates that this is, in fact, either a discrete-time model or the discrete-time

equivalent of a continuous-time model. The process and measurement noises are also

assumed to be independent of the initial system state vector, x(t0). In looking forward to

the goal of designing a target tracking �lter, Qd(ti) can be thought of as a measure of our

con�dence in the assumed target dynamics model while R(ti) represents the quality of our

measuring device (sensor).
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Furthermore, let us also assume that the initial state, x(t0), is well described by a

Gaussian probability density function (PDF) with mean bx(t0) and covariance matrix P (t0).
It can then be shown that the conditional density function fx(ti)jZ(ti)(�jZi), for the state

x(ti) conditioned on the measurement history up until that time (Z(ti)), remains Gaussian

with conditional mean bx(t+i ) and conditional covariance P (t+i ). One important distinction
between Z(ti) and z(ti) must be made here; Z(ti) is the history of all measurements from

time t0 to time ti, while z(ti) is merely the measurement at time ti. It can also be proven

that the conditional density function fx(ti)jZ(ti�1)(�jZi�1), for x(ti) conditioned on the

previous measurement history (Zi�1), maintains its Gaussian structure with conditional

mean bx(t�i ) and conditional covariance P (t�i ) [12]. The conditional density function for

the propagated state is recognized as fx(ti)jZ(ti�1)(�jZi�1), while fx(ti)jZ(ti)(�jZi) is the

conditional density function for the updated state. This distinction is further emphasized

by the superscript notation in which "�" indicates �rst and second order statistics before a

measurement update, whereas "+" indicates these same statistics after the incorporation

of the current measurement. The conditional mean and covariance for both the propagated

and the updated states are de�ned as:

bx(t�i ) , Efx(ti)jZ(ti�1) = Zi�1g

P (t�i ) , Ef[x(ti)� bx(t�i )][x(ti)� bx(t�i )]T jZ(ti�1) = Zi�1g

bx(t+i ) , Efx(ti)jZ(ti) = Zig

P (t+i ) , Ef[x(ti)� bx(t+i )][x(ti)� bx(t+i )]T jZ(ti) = Zig (2.3)

When we talk about the Kalman �lter�s estimate of the target state vector, we will typically

be referring to the conditional mean of the updated state. Given that the expected value is

a linear operation and that the state transition matrix is a purely deterministic quantity, we

are now ready to present the explicit expressions for the conditional mean and covariance.
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For the propagated state estimate, we may substitute the assumed form of x(ti) from

Equation (2.1) into the de�nitions of bx(t�i ) and P (t�i ) in Equation (2.3) and solve to obtain
bx(t�i ) = �(ti; ti�1)bx(t+i�1)
P (t�i ) = �(ti; ti�1)P (t

+
i�1)�

T (ti; ti�1) +Gd(ti�1)Qd(ti�1)G
T
d (ti�1) (2.4)

In the case of the updated state estimate, we �rst note that bx(t+i ) and P (t+i ) are the

mean and covariance associated with the conditional PDF fx(ti)jZ(ti)(�jZi), which may be

rewritten as

fx(ti)jZ(ti)(�jZi) =
fz(ti)jx(ti);Z(ti�1)(�ij�; Zi�1)fx(ti)jZ(ti�1)(�jZi�1)

fz(ti)jZ(ti�1)(�ijZi�1)
(2.5)

after a few applications of Bayes�rule. It can then be shown that, for the case of a linear

measurement model, this conditional PDF remains Gaussian with mean and covariance

given by [12]

bx(t+i ) = bx(t�i ) +K(ti)[zi �H(ti)bx(t�i )]
P (t+i ) = P (t�i )�K(ti)H(ti)P (t

�
i )

K(ti) = P (t�i )H
T (ti)[H(ti)P (t

�
i )H

T (ti) +R(ti)]
�1 (2.6)

where K(ti) is referred to as the Kalman gain. At this point, it should be noted that,

given the structure of the equations, the entire time history of the Kalman gain and both

the propagated and updated covariances may be computed from the system de�nition and

the initial covariance P (t0) without requiring access to the actual real-time measurements.

2.2.2 Target Models. Now that we have the structure of the linear Kalman �lter,

we are ready to investigate the other essential part of this target tracking �lter: the target

dynamics model. A plethora of dynamics models exist, all based on di¤erent assumptions

about the behavior of the target system. While it might be interesting to investigate

the full realm of target models, our intent is only to present the details of a few of the

more commonly used model types. To that end, we will present the state transition and
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Figure 2.1 Block diagram of FOGMA model

process noise matrices for the �rst-order Gauss-Markov acceleration (FOGMA) model, the

constant velocity (CV) model, and the coordinated turn model.

2.2.2.1 First-Order Gauss-Markov Acceleration Model. As the name im-

plies, the FOGMA model assumes that the acceleration of the target is adequately de-

scribed by a �rst-order lag system driven by white Gaussian noise (of appropriate strength).

In general, this model also assumes that the dimensions of the system (x, y, and z directions

for instance) may be decoupled, such that if one were to develop the state transition (�)

and process noise (Qd) matrices for position, velocity, and acceleration in one direction,

then the full dimension system would be described by the use of independent copies of the

� and Qd matrices.

This model is shown, conceptually, in Figure 2.1 for the continuous-time case. Based

on this model, the continuous-time state equations have the form

:
x(t) = vx(t)

:
vx(t) = ax(t)

:
ax(t) = � 1

�m
ax(t) + wx(t) (2.7)

2-5



where �m is the time constant of the target�s maneuver and wx(t) is continuous-time zero-

mean white Gaussian noise of variance �2a (this is also the mean-squared acceleration).

Converting this to a discrete-time representation, we obtain the following state transition

matrix [6, 10]

� =

26664
1 T �2m(�1 + T

�m
+ e�T=�m)

0 1 �m(1� e�T=�m)

0 0 e�T=�m

37775 (2.8)

where T is the sample interval for the discrete-time system and the exact form of the

process noise matrix may be found in Section 4.2.1 of [6]. Assuming that the sample

interval (T ) is signi�cantly less than the maneuver time constant (�m), we obtain the

simpli�ed state transition and process noise matrices [4, 6, 10]

� =

26664
1 T T 2

2

0 1 T

0 0 1

37775

Qd;FOGMA =
2�2a
�m

26664
T 5

20
T 4

8
T 3

6

T 4

8
T 3

3
T 2

2

T 3

6
T 2

2 T

37775 (2.9)

Note that this limiting case of the FOGMA model is actually the de�nition of the constant

acceleration model, in which jerk (the time derivative of acceleration) is modeled as zero-

mean white Gaussian noise.

The assumption that T � �m is not a requisite characteristic of the FOGMA model;

however, it permits the use of signi�cantly simpli�ed de�nitions for the � and Qd matrices.

In addition, as T approaches �m, the accuracy of our acceleration estimate continually

degrades until, for T � �m, we essentially lose the ability to track the target�s acceleration.

At this point, we would be better o¤ switching to a constant velocity model since the

acceleration appears white instead of time-correlated.

2.2.2.2 Constant Velocity Model. The CV model is based on the assumption

that the target�s acceleration is adequately described by zero-mean, white Gaussian noise
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Figure 2.2 Block diagram of CV model

and the velocity essentially remains constant. As shown in Figure 2.2, the model for

the velocity state is depicted as an integrator driven by zero-mean white Gaussian noise.

Similar to the FOGMA model, the CV model also assumes a decoupling of the target

motion in the x, y, and z directions.

Based on the model in Figure 2.2, the continuous-time state equations are

:
x(t) = vx(t)

:
vx(t) = 0 + wx(t) (2.10)

The state transition and process noise matrices are then [4,6]

� =

241 T

0 1

35
Qd;CV = q

24T 33 T 2

2

T 2

2 T

35 (2.11)

where q is the strength of the zero-mean white Gaussian noise used to de�ne the target�s

acceleration. As implied in our discussion of the FOGMA model, the CV model is seen to

be a limiting case of the FOGMA model for the situation where �m is signi�cantly smaller

than T .

2.2.2.3 Coordinated Turn Models. The two target models discussed so far

have assumed that is it possible to decouple a 3-dimensional problem (x, y, z directions)
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into three completely separate 1-dimensional problems. This assumption is not always

valid, as in the case of on aircraft performing a coordinated turn [6]. In this situation,

target motion in one direction will provide information regarding complementary motion in

one or both of the remaining directions. This gives rise to the coordinated turn model [6],

wherein it is assumed that the turn is accomplished at a nearly constant rate of turn (!).

For a coordinated horizontal (x,y) turn, where we assume the third direction of

motion acts independent of the other two directions, the state transition matrix (corre-

sponding to the state vector [x vx y vy !]T ) and the process noise matrix for the coupled

directions are given by

� =

26666666664

1 sin(!T )
! 0 cos(!T )�1

! �15

0 cos(!T ) 0 � sin(!T ) �25

0 1�cos(!T )
! 1 sin(!T )

! �35

0 sin(!T ) 0 cos(!T ) �45

0 0 0 0 1

37777777775
x=bx

Qd;turn = �2a

26666666664

T 4

4
T 3

2 0 0 0

T 3

2 T 2 0 0 0

0 0 T 4

4
T 3

2 0

0 0 T 3

2 T 2 0

0 0 0 0 �2!T
2

�2a

37777777775
(2.12)

where the elements of � are evaluated at the current state vector estimate, �2a is the

variance of the random acceleration, and �2! is the turn rate variance. The elements in

the �nal column of the state transition matrix are the partial derivatives of the non-linear

discrete-time function with respect to the turn rate and are given by

�15 =
(!T cos(!T )� sin(!T )) vx � (!T sin(!T )� 1 + cos(!T )) vy

!2

�25 = �(T sin(!T )vx + T cos(!T )vy)

�35 =
(!T sin(!T )� 1 + cos(!T )) vx + (!T cos(!T )� sin(!T )) vy

!2

�45 = T cos(!T )vx � T sin(!T )vy (2.13)
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2.3 Control Concepts

In this section, we delve into a few di¤erent control optimization techniques. Given

that one of the goals of this research is to evaluate the utility of the CLC and MPC

approaches in a 3-dimensional setting, we will �rst present the background of the work

that has been accomplished using these control methods for 2-dimensional problems. Our

brief discussion of control concepts will conclude with a presentation on the theory of

minimum e¤ort control.

2.3.1 Circle-Line-Circle Control. The driving concern behind the CLC control

optimization method [1,2] is that there are limits imposed on the magnitude of the control

inputs and there is a desire to minimize deviations from a LOS path between waypoints.

When a non-zero input is applied, the desire is to have the magnitude of the optimal input

be equal to an upper bound. By employing this proposed control scheme, a vehicle would

traverse a set of waypoints by following the straight-line path between successive waypoints

until a certain time (known as the switching time), when a series of turns are executed at the

vehicle�s maximum turn rate, in order to reach the next straight-line segment. A notional

view of the trajectory generated by this manner of control is shown in Figure 2.3. Note

that in order to execute a sharp turn to the right at wp
current

, one would �rst command

a short turn to the left in an e¤ort to smooth the transition into the rightward turn. A

similar smoothing turn would be executed at the end of the turn in order to transition back

to the straight-line segment. All that remains is a need to determine the switching time,

and then one would have an optimal control method that incorporates constraints on the

control input. Currently, this method has only been applied to 2-dimensional problems.

Since the theory of this control mechanism relies heavily on Pontryagin�s Minimum

Principle, we shall start o¤ by outlining the details of this principle [1, 19]. Let us adopt

the form of the general nonlinear dynamic system given by

:
x(t) = f(x(t); u(t)) (2.14)
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wpprevious

wpcurrent

wpnext

LOS path
segment constrained

feasible path
segment

wpprevious

wpcurrent

wpnext

LOS path
segment constrained

feasible path
segment

Figure 2.3 CLC conceptual trajectory for transition between straight-line segments de-
�ned by the waypoints wpprevious, wpcurrent, and wpnext

with initial condition x(t0), �nal state constraint set

� = fx(tf ) 2 Rnx j�(x) = 0g (2.15)

and input constraint set

� = fu 2 Rnu j�(u) � 0g (2.16)

for the vectors of continuously di¤erentiable functions de�ned by f , � and �. For the

functions in the constraint sets, let us assume that the gradient matrices, @�(x)@x and @�(u)
@u ,

consist of linearly independent gradient vectors for all possible x and u, respectively. Now,

if u� is an admissible and optimal control input, optimal in the sense that it minimizes the

cost function

J =

Z tf

0
dtC(x(t); u(t)) (2.17)

then a continuous piecewise-di¤erentiable function 
(t) = [
1 � � � 
nx ]T , a constant 
0 � 0,

and a constant vector � = [�1 � � � �ng ]T are guaranteed to exist and satisfy the following
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conditions [1]:

:


T

= �@H
@x
ju=u� (2.18a)

�(x(tf )) = 0 (2.18b)


T (tf ) = �T
@�(x)

@x
jx=x(tf ) (2.18c)


0 6= 0 (2.18d)


 6= 0 (2.18e)

where H is the system Hamiltonian given by

H(x(t); u(t); 
(t); 
0) = 
0C(x(t); u(t)) + 

T (t)f(x(t); u(t)) (2.19)

Furthermore, the Hamiltonian takes on a global minimum almost everywhere when evalu-

ated along the trajectory resulting from the application of the optimal input:

H(x(t); u�(x(t)); 
(t); 
0) = minu2�
(H(x(t); u(t); 
(t); 
0)) = 0 (2.20)

Note that Equation (2.18a) is a backward time propagation for the adjoint state, 
(t), and

Equation (2.18c) is the terminal condition for this propagation. Caution must be exercised

when applying the minimum principle in that the conditions in Equation (2.18) are only

necessary conditions. No guarantee is made that any input which satis�es these four

conditions is in fact an optimal control. However, all inputs which satisfy the conditions

of Equation (2.18) and Equation (2.20) are referred to as extremal controls and, collectively,

these extremal controls comprise the set of possible optimal controls for a given problem.

With the foundation of the minimum principle of Pontryagin, the research in [1] proved that

commanding an input that has magnitude which is equal to the upper limit of the control

constraint produced an extremal input for the class of problems under consideration.

We will now summarize this development for the 2-dimensional navigation problem.

The problem begins with a simple set of kinematic equations for the motion of a vehicle
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in a horizontal plane

:
x(t) = s cos(	(t))

:
y(t) = s sin(	(t))

:
	(t) = u(t) (2.21)

where x and y are position coordinates, s is a constant speed and 	 is the vehicle heading

angle. The magnitude of the input is constrained, such that

kuk � umax (2.22)

to account for the fact that the vehicle is not capable of making arbitrarily fast turns.

Next, it is desired to navigate a set of known waypoints in a time-optimal fashion while

obeying the input constraint. Since we are considering a time minimization as our criterion

of optimality, the appropriate cost function to be minimized is simply

J =

Z tf

0
dt (2.23)

From this point, the proof of an extremal control becomes the evaluation of the inequality

implied by Equation (2.20)

H(x; u�; 
; 
0) � H(x; u; 
; 
0); 8u 2 �

H(x; u; 
; 
0) = 
0 + 
1(t)s cos( ) + 
2(t)s sin( ) + 
3(t)u(t) (2.24)

which simpli�es to


3(t)u
�(t) � 
3(t)u(t); 8u 2 � (2.25)

Given this �nal inequality, the proposed optimal input can be written as

u�(t) = �sign(
3(t))umax (2.26)
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and can be shown to be an extremal control by evaluating the conditions in Equation

(2.18).

An additional result of the Anderson research [1] was the development of a convenient

method to force the trajectory to pass through a point, p
cross

, near the current waypoint,

wp
current

. This desired point is constrained to lie on the bisector of the straight-line

segments de�ned by wp
previous

, wp
current

, and wp
next

. Furthermore, the range of pos-

sible locations for p
cross

is bounded by wp
current

and a predetermined minimum point,

p
min
. The family of allowable trajectories, as shown in Figure 2.4, is characterized by a �

parameter such that the point where the trajectory crosses the bisector is given by

p
cross

= (1� �)wp
current

+ �p
min

� =




wp
current

� p
cross





s

umax

�
1

sin(
�CLC
2

)
� 1
� (2.27)

where �CLC is the angle between consecutive straight-line segments and � 2 [0; 1]. The

trajectories shown in Figure 2.4 represent the set of possible paths to �y when executing

a constrained turn. In general, we would prefer to apply the constrained turn trajectory

obtained by selecting � = 1, since this option produces a time-optimal solution. The

switching time computation for this general set of trajectories may be found in [1].

2.3.2 Model Predictive Control. The MPC approach [15] is a quadratic cost min-

imization technique that falls under the larger heading of receding horizon control (RHC)

methods [13]. It allows us to compute an optimal set of controls (valid for a �nite length

of time) to navigate between a set of known waypoints while explicitly addressing state

and input constraints. This optimal set of controls is realized as an optimal perturbation

about an assumed nominal input. Receding horizon control methods seek to determine

the optimal control, u�(t), for the non-linear system of Equation (2.14) by minimizing the

following cost function [13] over the �nite length interval from time t to time t+ T :

J(x; t;u) , 1

2

Z t+T

t
[xT (�)�x(�) + uT (�)�u(�)]d� (2.28)
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wpprevious

wpcurrent
κ = 0

wpnext

β/2

pcross
κ = [0,1]

pmin
κ = 1

wpprevious

wpcurrent
κ = 0

wpnext

β/2

pcross
κ = [0,1]

pmin
κ = 1

Figure 2.4 CLC trajectories with � parameter

Within the framework of RHC, model predictive control operates by �rst obtaining

a perturbational linearization of the system about some nominal control input, unom(t),

and system output, y
nom

(t), trajectories such that

u(t) = unom(t) + �u(t)

y(t) = y
nom

(t) + �y(t) (2.29)

Next, a set of control basis functions is determined so that the perturbation input and

output terms may be rewritten as linear combinations of a single set of scale factors [9,15]

�u = U�

�y = Y � (2.30)

where the matrix U describes the control basis functions, � is the vector of scale factors,

and the matrix Y describes the relationship between the output and the control basis

functions. Note that the U and Y matrices are sized such that they contain the required
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information for each sample instant on the interval from time t to time t+T . For example,

in the case of a single input described by �ve basis functions, the dimension of the U matrix

which covers a length-N time interval is N �5. The form of U is dictated by the choice of

control basis functions, and dramatic changes will be observed based on the choice of the

basis functions. For instance, the basis functions may be as simple as a set of ramp [15]

or tent [9] functions or as complex as a set of Laguerre or Legendre polynomials [16]. The

matrix Y is determined by driving the non-linear system with the input basis functions

one at a time.

Once we have obtained the U and Y matrices, MPC seeks to minimize the following

cost function (shown for a notional discrete-time system)

Jk =

k+N�1X
i=k

[(y
i+1

� ri+1)T�(yi+1 � ri+1) + u
T
i �ui] (2.31)

where N is the length of the �nite interval horizon, ri is a reference output trajectory at

time sample i, and � and � are cost weighting matrices. Based upon the perturbational

linearization of the system, we may rewrite the cost function as

Jk =

k+N�1X
i=k

[(y
nom;i+1

� ri+1)T�(ynom;i+1 � ri+1) + u
T
nom;i�unom;i + �y

T
i+1
��y

i+1

+ �uTi ��ui + 2(ynom;i+1 � ri+1)
T��y

i+1
+ 2uTnom;i��ui] (2.32)

Noticing that the �rst two terms represent an incurred cost that is independent of the

optimization and remembering the unique de�nition of the dimensions of the U and Y

matrices, we may drop the terms that do not involve perturbation variables and simplify

the cost function to be

Jk = �T (Y T�Y + UT�U)� + 2[(y
nom

� r)T�Y + uTnom�U ]� (2.33)

where the columns of r are the individual time samples, ri, of the reference trajectory

that spans the time interval of interest, and similar de�nitions apply to y
nom

and unom.
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Note that the summation in Equation (2.32) is embedded in the multiplications of the

higher-dimensioned vectors in Equation (2.33).

In preparation to solve the constrained optimization problem, we must �rst trans-

form the constraints on the input and output into constraints on the basis function scale

factors, since the optimization problem is actually considering the perturbational inputs

and outputs, as de�ned by Equation (2.30), instead of the full-scale values. This is a very

simple process since the original constraints are given as

ulower � u � uupper

y
lower

� y � y
upper

(2.34)

We may use Equations (2.29) and (2.30) to reform these constraints as upper limits on the

basis function scale factors 26666664
U

�U

Y

�Y

37777775 � �
26666664
uupper � unom
unom � ulower
y
upper

� y
nom

y
nom

� y
lower

37777775 (2.35)

The MPC problem is now in a format that can be solved by the MATLAB
R

quadratic

programming function, quadprog.

In general, research on the use of MPC techniques for �ight control optimization has

been limited to 2-dimensional cases, for which it is assumed that an autopilot is capable of

holding the third dimension of motion stable, and a simpli�ed 3-degree-of-freedom model is

used to represent the air vehicle. Attempts have been made at considering 3-dimensional

scenarios and using a full 6-degree-of-freedom air vehicle model, but these e¤orts typically

revert to 2-dimensional approaches when faced with the task of obstacle avoidance [9].
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2.3.3 Controllability Matrices and Grammians. We typically consider state space

representations of linear (or linearized) systems to be given in the following form

:
x(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) (2.36)

where x(t) is the length-n state vector, u(t) is the length-m input vector and y(t) is the

length-p output vector. The A, B, C and D matrices are the appropriately sized matrices

which describe the input-output behavior of the system relative to the internal state vector.

In general, the system matrices are functions of time, but for the purpose of this research,

we have restricted our attention to constant matrices.

One primary concern for control engineering is to answer the question [14], "Starting

from the origin in our state-space, can I drive the state to any desired �nal location in

state-space by applying a control input?" If the answer to this controllability question is

yes, then the system is considered to be completely controllable. On the other hand, if

the answer is no, then the system is said to be uncontrollable and a secondary concern is

created. For an uncontrollable system, we seek to determine the regions of state-space

we can in fact reach. Finally, for both the completely controllable and the uncontrollable

systems, we must consider the relative cost, in terms of control input energy, required to

travel along the various directions of state-space. This last piece brings in a quality aspect

to the controllability discussion. We shall now investigate these concerns.

The mathematical equivalent of the controllability question is the desire to know if

x 2 <fMcg (2.37)

is satis�ed for all possible x, where Mc is a special matrix known as the controllability

matrix, <f�g denotes the range space of the bracketed matrix, and x is the state at which

we wish to arrive, having started from the zero state. This controllability matrix, of
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dimension n� nm, is computed from the system matrices in the following manner [7]:

Mc =

�
B
... AB

... A2B
... � � �

... An�1B
�

(2.38)

The system is deemed completely controllable if and only if Mc is of rank n. In the event

that the speci�ed system is uncontrollable, the reachable region of state-space may be

obtained by computing the range space ofMc. Conversely, if one is interested in explicitly

specifying the unreachable portion of state-space, then this is given by the null space of

Mc. Methods for performing these two computations may be found in most texts on linear

systems or linear algebra [14,18].

Having addressed the �rst two issues of controllability, we now consider the energy

cost required to drive the system along certain directions of state-space. A convenient

construct to perform this investigation already exists in the form of the controllability

Grammian. For this presentation, we will need to make use of the state transition matrix,

which may be calculated for the case of a time-invariant system via the following equation:

�(t� t0) = eA(t�t0) (2.39)

where t0 is the initial time. The controllability Grammian (Wc) is then de�ned as [12]

Wc(t) ,
Z t

0
�(t� �)BBT�T (t� �)d� (2.40)

or in an alternate, yet equivalent, form as [14]

Wc(t) , �(t)
�Z t

0
�(��)BBT�T (��)d�

�
�T (t) (2.41)

and has the following properties [14]

1. Wc(t) is symmetric for all t � 0.

2. All of the eigenvalues of Wc(t) are either positive or zero.

3. The system is completely controllable if and only if Wc(t) is of rank n for t > 0.

This is equivalent to requiring Wc(t) to have only positive eigenvalues.
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4. Wc(t) =
R t
0 �(�)BB

T�T (�)d� (note that this obtained by substituting � = t� �).

5. Wc(t) is the solution to the n � n matrix Lyapunov di¤erential equation with zero

boundary conditions

dWc(t)

dt
= AWc(t) +Wc(t)A

T +BBT (2.42)

6. If the system is stable, then the steady-state controllability Grammian, Wcss , exists

and is the solution to the n� n matrix Lyapunov equation

0 = AWcss +WcssA
T +BBT (2.43)

7. To arrive at the desired state, x, the norm squared value of the minimum energy

control satis�es

ku�k2 � 1

�min
kxk2 (2.44)

where �min is the minimum eigenvalue of Wc(t).

8. To arrive at the state given by x = �i�i, where �i is the unit norm eigenvector of

Wc(t) corresponding to the eigenvalue �i, the norm squared value of the minimum

energy control is given by

ku�k2 = �2i
�i

(2.45)

From the �nal property in this list, we can see the beginnings of how a concept

of quality of controllability may be realized. The best method to describe this is with

an example. Let us assume that the eigenvalues for a 2 � 2 steady-state controllability

Grammian are �1 = 4 and �2 = 0:25. The energy of the minimum e¤ort control for

x = �
1
is ku�k2 = 0:25, while ku�k2 = 4 for the case of x = �

2
. This demonstrates that

movement in the �
2
direction of state-space is sixteen times as costly as movement in the �

1

direction. Thus, even though it is possible to move in the �
2
direction, it is rather di¢ cult

to accomplish this movement, relative to the e¤ort required to move in the �
1
direction.
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2.3.4 Minimum E¤ort Control. Given the mathematical construct of the control-

lability Grammian, we may turn our attention to the concept of minimum e¤ort control.

The goal of this control technique is to �nd the input, u�(t), that drives the zero state

response

xzs(tf ) = �(tf )

Z tf

0
�(��)Bu(�)d� (2.46)

to the desired state x within a �nite amount of time, such that the norm of this input

is smaller than the norm of any other input that can reach the solution xzs(tf ) = x. A

control input that attains this �nal state, one that has been proven to have the minimum

norm, is given by [14]

u�(t) = BT�T (tf � t)W�1
c (tf )x; 0 < t � tf (2.47)

2.4 F-16 Simulation Model

The �nal topic in this presentation of background information is a discussion of the

F-16 dynamics model which provides the basis for the simulation environment. This

simulation model was developed by the faculty of the Air Force Institute of Technology

(in collaboration with Environmental Tectronics Corporation) [11] and is based on the air

vehicle and controller models described in [17].

Figure 2.5 shows the overall setup of the non-linear system, to include the aircraft

plant model and the feedback autopilot controllers. At the core of this simulation is

a function which applies saturation limits on the inputs and numerically computes the

derivative of the state vector. The state and control input vectors for this model are
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de�ned as

x =

266666666666666666666666666666666666666666664

VT

�aoa

�

�

�

 

�rate

�rate

 rate

pn

pe

h

engine lag

eledefl

aildefl

rdrdefl

377777777777777777777777777777777777777777775

u =

26666664
throttle

elecmd

ailcmd

rdrcmd

37777775 (2.48)

where VT is the vehicle�s air speed, �aoa is the angle of attack, � is the sideslip angle, �, �,

and  are the roll, pitch, and yaw orientation angles, �rate, �rate, and  rate are the rates

of change of the orientation angles, pn and pe are the northward and eastward position,

h is the altitude, engine lag is a lag state associated with the engine thrust dynamics,

and eledefl, aildefl, and rdrdefl, are the actuator de�ection angles for the elevator, aileron,

and rudder. The angle of attack and the sideslip angle describe the orientation of the

vehicle with respect to the velocity vector and are two of the angles which help to de�ne

the direction of the vehicle�s motion. In the control input vector, throttle is commanded

throttle setting expressed as a percentage of the maximum value, and elecmd, ailcmd, and

rdrcmd are the commanded de�ection angles for the elevator, aileron, and rudder.

Each of the feedback controllers in Figure 2.5 is a simple autopilot designed to main-

tain a predetermined set of equilibrium velocity and orientation conditions. External

inputs are available to modify the feedback commands in an e¤ort to mimic the inputs
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Figure 2.5 System model of an F-16 aircraft and autopilot controllers
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of a pilot. This model was originally created to evaluate the forces sensed at the pilot�s

seat [11] and, as such, the linear (lin_accel) and rotational (rot_accel) accelerations shown

in Figure 2.5 are holdovers from the research which previously used this model.

In order to facilitate the development in Chapter 3, we must detail the two angles

which de�ne the vehicle�s velocity vector. These two angles, known as the �ight path angle,


path, and the heading angle, 	, angles are shown in Figure 2.6 and may be calculated using

the information from the state vector that de�nes the system in Figure 2.5. The �ight path

angle is what actually determines whether the munition is climbing or diving. Knowledge

of the angle of attack and the vehicle pitch angle, both of which may be measured, permits

us to determine the �ight path angle. Mathematically, the �ight path angle is computed

as


path = � � �aoa (2.49)

as seen in Figure 2.6. The heading angle describes the motion of the vehicle within the

horizontal plane and may be determined from the yaw orientation angle and the sideslip

angle using the following expression

	 =  � � (2.50)

also as seen in Figure 2.6. Note the di¤erence between 	, the heading angle, and  , the

vehicle yaw angle. Given these two angles and the air speed of the vehicle we may de�ne

the north, east, and vertical velocities as

26664
Vnorth

Veast

Vvertical

37775 =
26664
VT cos(	) cos(
path)

VT sin(	) cos(
path)

VT sin(
path)

37775 (2.51)

2.5 Summary

The various sections of this chapter have provided the fundamental concepts required

to proceed with this research. First, Section 2.2 provided the background of linear Kalman
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Figure 2.6 Description of �ight path and heading angles

�ltering, the popular method used in many target tracking applications. Next, Section

2.3 detailed a few methods, including circle-line-circle control, model predictive control,

and minimum e¤ort control, to accomplish an optimal control task in two dimensions.

Finally, Section 2.4 presented a basic simulation environment based on the �ight dynamics

of an F-16 aircraft. Equipped with this foundation, we now turn to the development of a

3-dimensional guidance algorithm and the extension of the control optimization techniques

discussed in Section 2.3.
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III. Algorithm Development and Simulation Description

3.1 Introduction

In this chapter we present the development of the guidance algorithm and the ex-

tension of the control optimization techniques to three dimensions. As shown in Figure

3.1, the guidance algorithm consists of the target tracking, waypoint generation, and path

selection subroutines. When appropriate, pseudocode will be provided and an example

will be discussed in the text. Additionally, the rationale behind major decisions will be

explained. The target information block of Figure 3.1 is merely an external input which

provides the target measurement data required by the target tracker. We are now ready

to step through the remaining sections of Figure 3.1 sequentially, starting with the target

tracker.

3.2 Target Tracker

The primary function of the target tracker in Figure 3.1 is to determine the target

with the highest value and to compute an aimpoint for the munition. In order to accom-

plish these tasks, the tracker will have to maintain accurate position and velocity estimates

for each potential target. Additionally, we will require some form of attribute data so that

the tracker can classify the potential targets according to a list of target types.

The linear Kalman �lter of Equations (2.4) and (2.6) forms the basis of this target

tracker. Realizing that we intend to engage ground targets, we use the constant velocity

model, with � and Qd matrices given by Equation (2.11), to describe the kinematics of

the targets in the scenario. For simplicity, each target in this multi-target scene will

be tracked independently, and only the measurement corresponding to the current target

under consideration will be presented to the Kalman �lter. The estimate that we obtain

(bx) from this tracking �lter only contains information regarding the position and velocity

of the target. An attribute tracking method is required to provide the determination of

target type. A hard decision on target type is not necessary, and it is possible to make

soft assignments, such that we obtain the probability of the target being a speci�c type.

As will be shown in the following discussion on target values, the soft assignment of target
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type is preferred since it permits the computation of a blended target value. In order

to ensure we only engage enemy targets, friendly and neutral targets would have to be

considered obstacles to be avoided by the remainder of the path planning process.

Given our desire to engage the highest value target, we must now consider how to

assign target values. Two obvious possibilities for computing target value are a maximum

a posteriori value computation

vi1 = max
piTj

�Tj (3.1)

and a probability-weighted value computation

vi2 =

NTX
j=1

piTj�Tj (3.2)

where vi is the value of target i, piTj is the probability that target i is of type Tj , �Tj

is the value of target type Tj , and NT is the number of target types. The bene�t of

the probability-weighted target value computation method is that it allows for a more

re�ned estimate of the target�s identi�cation by incorporating the uncertainty in target

classi�cation function directly into the target�s value. This also permits a more de�nitive

determination of the highest-valued target since the value of individual targets will tend

to be more spread out than if the maximum a posteriori value computation method was

implemented.

Finally, once we have assigned a value to all the targets in the scenario, we have to

determine a terminal waypoint for the munition, wp
aim
. One logical option for computing

the aimpoint would be the value-weighted centroid of the targets

wp
aim

=

NX
i=1

evidpos
i

(3.3)

where evi is the normalized value for target i and dpos
i
is the estimated position for this

same target.
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3.3 Waypoint Generator

This operation establishes the set of candidate paths that is passed to the path

selection algorithm. Each path is determined by placing a series of waypoints capable of

guiding the munition toward the given termination point. The candidate paths generated

in this section are determined in a fashion that guarantees obstacle avoidance, at least in

terms of the guidance path. We assume that the vehicle�s path planner has knowledge of

the location of all obstacles in the scenario, as stated in Chapter 1, and that the obstacles

may be represented as simple shapes (primarily rectangular solids). The use of simple

shapes is a highly non-restrictive assumption since complex shapes (such as ellipsoids) may

be represented by a circumscribed box.

First we must determine if the munition would impact any obstacles while �ying the

line-of-sight path to the target. This is accomplished by computing the vehicle�s position

at numerous sample points along this LOS vector and then checking if any position triplet

falls within the bounds of the obstacles. If we determine that no impacts occur, then this

entire path planning process may be bypassed and the optimal path is found to be simply

the LOS path between the munition and the target. On the other hand, for the more

important case, in which we must maneuver around an obstacle, we need to place a series

of waypoints to guide the munition past the obstacle.

The simple 2-dimension version of this problem tells us to plan three paths. The �rst

path maintains the line-of-sight heading while �ying up-and-over the obstacle. The other

two paths maintain the current altitude while �ying directly around the obstacle. Even

though these three paths would be su¢ cient if we merely want to get past the obstacle,

our desire to accomplish this task in an e¢ cient manner drives us to formulate additional

path options. For illustrative purposes, we choose to create two more candidate paths

somewhere in between the directly over and directly around paths. The obvious option is to

�y at a heading halfway between the up-and-over and the around paths while selecting the

altitude of the waypoint based on the height of the obstacle. A notional set of waypoints

have been placed in Figure 3.2. Note that the paths shown do not actually impact the

obstacle, but are o¤set from the edges by a small safety bu¤er. Given the type of path
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Figure 3.2 Notional waypoint placement - paths do not impact obstacle

(up-and-over, around, up-and-around) and the dimensions of the obstruction, we are now

ready to place the waypoints for the 5 candidate paths.

For the simplest path, the up-and-over candidate, we place the altitude of the way-

point at the maximum altitude of the obstacle we are projected to impact and add in a

user-de�ned safety bu¤er. The north and east position of the waypoint are then �xed

to be equal to the location where we initially strike the obstacle. This gives us the �rst

waypoint choice as

wpup�over =

26664
pnorth;impact0

peast;impact0

hmax + dsafety

37775 (3.4)

where pnorth;impact0 and peast;impact0 denote the north and east position of the point of

impact on the �rst obstacle we reach, hmax is the maximum altitude of this obstacle, and

dsafety is the adjustable safety margin.

For the around paths, our speci�c placement of waypoints is dependent upon both

our general heading and our starting position relative to the obstacle�s boundary in the
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horizontal plane. For instance, if the heading of the line-of-sight path to the next waypoint

is primarily in a northward direction and if the previous waypoint is located to the west of

the obstacle, then we should attempt to �y around the obstacle by choosing the northwest

and southeast corners of the obstacle as intermediate waypoints. As stated earlier, we

maintain the altitude of the previous waypoint for these two new waypoints. A summary

of the entire decision logic is shown in Algorithm 1.

In the case of the up-and-around paths, we begin by computing our desired heading,

	up�around, as the angle which bisects the up-and-over and around paths

	up�around =
	up�over +	around

2
(3.5)

Next, we determine the vehicle�s position at various sample points along this new heading

and obtain the same type of obstacle impact information that was used for the up-and-over

path. Speci�cally, we compute the location of �rst impact and the maximum height of

the obstacle. We �nish this path type by computing the location of the waypoint in the

same manner as Equation (3.4).

Now that we have determined a set of waypoints for the front edge of an obstacle,

a series of veri�cations must be made. In the �rst veri�cation step, we check to see if

the LOS path from the new waypoint to the termination point passes through the same

obstacle we are attempting to avoid. If an impact is detected, then we are forced to place

an intermediate waypoint based on the type of the path (up-and-over, around, up-and-

around) we are extending and the general heading of this LOS path. As an example, if

we must extend an up-and-over path and we are heading in a northerly direction, then we

shall hold the altitude constant and set the north position of the intermediate waypoint

on the northern edge of the obstacle (plus the adjustable safety distance). Although

this approach may appear to cause issues in the presence of multi-modal obstacles, the

�nal layer of veri�cation in this series will eliminate this concern. The east position of

this waypoint is then computed using simple planar geometry. As shown in Figure 3.3,

the east position is given as peast;new = peast;old + �north tan(	). The following three

sections of pseudocode present the method used to extend the up-and-over (Algorithm 2),
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Algorithm 1 Compute waypoints of "around" type
pos0 = position of previous waypoint
Set altitude of waypoint at altitude of pos0
if Heading north then
if pos0 is west of obstacle then

5: Place waypoints on northwest and southeast corners of obstacle
else if pos0 is east of obstacle then
Place waypoints on northeast and southwest corners of obstacle

else
Place waypoints on southwest and southeast corners of obstacle

10: end if
else if Heading south then
if pos0 is west of obstacle then
Place waypoints on southwest and northeast corners of obstacle

else if pos0 is east of obstacle then
15: Place waypoints on northwest and southeast corners of obstacle

else
Place waypoints on northwest and northeast corners of obstacle

end if
else if Heading east then

20: if pos0 is north of obstacle then
Place waypoints on northeast and southwest corners of obstacle

else if pos0 is south of obstacle then
Place waypoints on northwest and southeast corners of obstacle

else
25: Place waypoints on northwest and southwest corners of obstacle

end if
else
if pos0 is north of obstacle then
Place waypoints on northwest and southeast corners of obstacle

30: else if pos0 is south of obstacle then
Place waypoints on northeast and southwest corners of obstacle

else
Place waypoints on northeast and southeast corners of obstacle

end if
35: end if
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around (Algorithm 3), and up-and-around (Algorithm 4) waypoints. The extension of the

waypoints shown in Figure 3.2 is seen in Figure 3.4.

Algorithm 2 Extending "up-and-over" paths
pos0 = position of previous waypoint
	0 = heading of path at pos0
Set altitude of waypoint at altitude of pos0
if Heading north then

5: Follow 	0 to north edge of obstacle
else if Heading south then
Follow 	0 to south edge of obstacle

else if Heading east then
Follow 	0 to east edge of obstacle

10: else
Follow 	0 to west edge of obstacle

end if

Algorithm 3 Extending "around" paths
pos0 = position of previous waypoint
Set altitude of waypoint at altitude of pos0
if Heading north then
Extend waypoints to northern corners of obstacle

5: else if Heading south then
Extend waypoints to southern corners of obstacle

else if Heading east then
Extend waypoints to eastern corners of obstacle

else
10: Extend waypoints to western corners of obstacle

end if

The second level of veri�cation is only invoked if an intermediate waypoint was

generated as a result of the �rst layer of checks. At this point we are still concerned

with impacting the same obstacle, even though we do not expect there to be any further

trouble with this obstacle. If an obstacle collision is detected on the LOS path between

the intermediate waypoint and the waypoint from which it was extended, then this entire

candidate path may be discarded as a dead-end.

The �nal veri�cation layer, which is always necessary, checks for obstacle crossings

on the LOS between the most recently generated waypoint and the terminal waypoint. If

no collision is detected, then this candidate path is complete. On the other hand, when
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Algorithm 4 Extending "up-and-around" paths
pos0 = position of previous waypoint

path;0 = �ight path angle at pos0
	0 = heading angle at pos0
if Heading north then

5: Extend waypoints along 	0 and 
path;0 to northern edge of obstacle
else if Heading south then
Extend waypoints along 	0 and 
path;0 to southern edge of obstacle

else if Heading east then
Extend waypoints along 	0 and 
path;0 to eastern edge of obstacle

10: else
Extend waypoints along 	0 and 
path;0 to western edge of obstacle

end if

Ψ

∆north

(pnorth,old, peast,old)

(pnorth,new, peast,new)

Figure 3.3 Waypoint extension
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Figure 3.4 Extension of notional waypoints

a collision with a di¤erent obstacle is detected, the waypoint generation process must be

repeated using the most recent waypoint as the starting position.

This entire process in repeated until all candidate paths are designated as either

completed or dead-ends. As one can see, this algorithm has the potential of generating up

to 5nobst candidate paths, where nobst is the number of obstacles between the munition�s

launch point and the target�s location. The full waypoint generation process is summarized

in Algorithm 5.

3.4 Path Selection

The role of the path selection block in Figure 3.1 is to determine the optimal obstacle-

free path from a given set of potential �ight paths. Minimum e¤ort control theory provides

the basis for making this determination. This algorithm is also capable of identifying paths

that are not feasible to traverse for the set of given �ight conditions. A cost, made up

of three components, is computed for each candidate path and has the following general
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Algorithm 5 Top-level Waypoint Generation
Check for obstacle collisions
if collision detected then
Generate set of 5 waypoints
for all new waypoints do

5: Check for obstacle collisions on same obstacle along LOS path to aimpoint
if collision detected then
Extend the waypoint
Check for obstacle collisions on same obstacle along LOS path from previous
waypoint
if collision detected then

10: Delete candidate path
end if

end if
Check for obstacle collisions on new obstacle along LOS path to aimpoint
if collision detected then

15: Initiate new instance of waypoint generation
else
Declare candidate path complete

end if
end for

20: end if

form:

Jpath = Jorientation + Jtravel + Jdistance (3.6)

The explanation of each component of this cost will be given later in this section. As

an innovation of this research, these component costs are chosen based on the way the

problem is decomposed. Additionally, early test cases indicated that the north and east

position states from the state vector of Equation (2.48) led to an unstable system. Since

the vehicle is assumed to �y at a constant speed, one cannot expect the munition to reach

a steady-state value for north and east position. The data provided by these two states

must be ignored for the purpose of computing controllability Grammians. Given this loss

of important information, Jdistance is an e¤ort to address the fact that a portion of the

expended energy will be proportional to the total distance travelled. The candidate path

with the lowest total cost is then selected as the desired set of waypoints for the munition

to follow in order to reach the target. We will now outline the general procedure to be
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followed in computing the orientation and travel costs, starting with a brief discussion of

the controllability Grammian concept which is shared by both of these component costs.

First, a linearized system model of the air vehicle itself is generated. This linearized

state-space model is obtained by numerically computing the Jacobian matrix [11] for the

six-degree-of-freedom F-16 aircraft plant model given in Figure 2.5 and evaluating this

Jacobian at a given set of trimmed �ight conditions. These trim conditions are assumed

to be the equilibrium state values and the equilibrium input values required to �y the

vehicle in a speci�ed manner, such as steady-level �ight or wings-level nose-up (or nose-

down) �ight. Next, the feedback control loops are closed in order to form the full linearized

state-space model of the system under consideration. With this linearized model available,

we �nally compute the steady-state controllability Grammian using Equation (2.43) for the

total system under the current equilibrium state and input conditions. A cost may now be

computed as the norm squared value of the minimum energy control, in a manner similar

to Equation (2.45), required to reach a certain set of state values

ku�k2 =
nX
i=1

�2i
�i

(3.7)

where �i is the ith eigenvalue of the controllability Grammian and �i is a scale factor

associated with this eigenvalue. Note that this is an extension of Equation (2.45) to the

case of a more generalized desired state vector.

Before we continue to detail the unique steps taken to compute each component

cost, we must give a proof of how this generic cost is computed from the controllability

Grammian.

Proof. Let us assume that we have a stable system described in state-space by the

matrices A, B, C, and D (Equation (2.36)). Since the system is stable, we are guaranteed

that the steady-state controllability Grammian,Wcss , can be obtained by solving Equation

(2.43). Furthermore, let us also assume that Wcss is of full rank so that the system is

completely controllable (property 3 of controllability Grammians). This last assumption

is not necessary but will make the proof a bit easier. Later in the path selection process,
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a modi�cation of this assumption will be used as a built-in method to reduce the number

of candidate paths.

To get the proof started, we simply compute the eigenvalues and unit-norm eigen-

vectors of Wcss . From linear algebra, we know that the eigenvalues for a real, symmetric

matrix are guaranteed to be real and that the eigenvectors for distinct eigenvalues will be

orthogonal to each other. Now, for any desired state x, we evaluate the scalar projection

of x along each �
i
to obtain a set of scale factors which describe the amount of state motion

required in the �
i
direction of state-space

�i = xT �
i

(3.8)

Given that Wcss is real and symmetric and assuming that the n eigenvalues are all dis-

tinct (this is not an unrealistic assumption), the n eigenvectors are known to be linearly

independent of each other and we may write the desired state vector as

x =
nX
i=1

�i�i (3.9)

Next, we solve for the energy of the optimal control input vector using the following

norm expression

ku�k2 ,
Z tf

0
u�T (�)u�(�)d� (3.10)

After substituting in the form of the control input from Equation (2.47), the energy of this

vector is given by

ku�k2 = xTW�1
css [�(tf )

Z tf

0
�(��)BBT�T (��)d��T (tf )]W�1

css x (3.11)

where we have applied the properties of the state transition matrix such that �T (tf � �) =

�T (��)�T (tf ). The bracketed term in Equation (3.11) is the steady-state controllability

Grammian by de�nition (Equation (2.41)). Replacing x with the form of Equation (3.9),
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the norm squared value of the input can now be reduced to

ku�k2 =
 

nX
i=1

�i�
T
i

!
W�1
css

0@ nX
j=1

�j�j

1A (3.12)

We know that the eigenvalues and eigenvectors for a given matrix (
) are related to each

other by 
�
j
= �j�j [18] and it is easy to see that

1
�j
�
j
= 
�1�

j
, as long as the inverse of


 exists. Applying this to our input energy computation, the energy of the input becomes

ku�k2 =
 

nX
i=1

�i�
T
i

!0@ nX
j=1

�j
�j
�
j

1A (3.13)

Since the eigenvectors are presumed to all be mutually orthogonal, we may merge the

summations to obtain

ku�k2 =
nX
i=1

�2i
�i
�T
i
�
i

(3.14)

Noting that the eigenvectors used in this problem are forced to be of unit length (�T
i
�
i
= 1),

the norm squared value of the minimum energy control required to reach the desired state

is therefore given by Equation (3.7).

It must be noted here that the x vector used throughout the preceding proof is really

the desired change in system state such that, for a system linearized about some nominal

state

x = xdesired � xnominal (3.15)

We are now ready to deal with the speci�cs of each component cost.

For the orientation cost, we are primarily concerned with the energy required to

make changes in the vehicle�s heading and �ight path angles. However, given that the

angle of attack and pitch angle will vary slightly as a function of altitude, this component

cost will also consider the energy needed to achieve an altitude change. These energies will

be referred to, respectively, as the orientation energy (ku�k2orient) and the height energy

(ku�k2height), and we will consider each in turn.
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In the case of the orientation energy, the computed equilibrium state and input

values, to be used in the system linearization process, correspond to the air vehicle�s �ight

parameters (speed, altitude, and �ight path angle) at the current waypoint. The state at

which we desire arrive is identical to the current equilibrium state except that the heading

and �ight path angle information is replaced by the angles required to turn toward the

next waypoint. For the height energy, the starting equilibrium conditions are the state

and input values to which we drove the system while computing the orientation cost. The

goal state for this computation is merely the current equilibrium state with the altitude

of the next waypoint replacing that of the current waypoint. The overall orientation cost

for the lth candidate path is given by

Jorientation;l = ku�k2orient;l + ku
�k2height;l (3.16)

or in a generalized form which allows for relative weighting between the orientation and

height energies

Jorientation;l =W1 ku�k2orient;l +W2 ku�k2height;l (3.17)

For the travel cost, we are interested in addressing the energy involved in merely

�ying on a straight and level path. Bearing this in mind, the equilibrium values used

in the system linearization are computed based on steady-level �ight at a constant speed

and at the altitude of the next waypoint. Due to our desire to �y straight and level over

a given distance (d), we must alter the energy computation to account for this distance

traveled. In order to keep the computation balanced correctly, we must also modify the

state vector we are driving toward. After incorporating these changes, we arrive at the

following equations to be used only for the travel cost computations

x =

nX
i=1

�i�i
d

(3.18)

instead of Equation (3.9) and

ku�k2travel = d2
nX
i=1

�2i
�i

(3.19)
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instead of Equation (3.7). The overall travel cost for the lth candidate path is given by

Jtravel;l = ku�k2travel;l (3.20)

The distance cost, although it is computed based on the distance travelled, is really

misnamed. Since we have made the assumption that the vehicle maintains a given speed

throughout its �ight, this is really a manner of incurring a cost for prolonged �ight times.

The rationale behind this cost component is that, lacking an explicit expression for fuel

consumption, a longer �ight will tend to require more propellent than a shorter �ight.

This cost is based on calculating the total distance (disttot;l) traveled for the lth candidate

path as shown below

disttot;l =

nwp�1X
i=1




wp
i+1

� wp
i




 (3.21)

where nwp is the number of waypoints on the path under consideration

The procedure described above is used to compute the cost to �y between any two

waypoints in a candidate path. Once the energies and distances are fully computed for

each candidate path, we are �nally ready to determine the component costs associated

with each path. In order to ensure that the values are all around the same rough order of

magnitude, we will simply normalize the data in each component, so that we arrive at the

following component costs

eJorientation;l =
Jorientation;lPnpaths

i=1 Jorientation;ieJtravel;l =
Jtravel;lPnpaths

i=1 Jtravel;ieJdistance;l =
disttot;lPnpaths

i=1 disttot;i
(3.22)

where npaths is the total number of candidate paths being evaluated. The net e¤ect of

this normalization is to give each cost component an equal weighting in the overall cost

computation

Jpath;l = eJorientation;l + eJtravel;l + eJdistance;l (3.23)
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One could readily alter the relative weighting of these costs by including a multiplicative

factor on each component cost

Jpath;l =W3
eJorientation;l +W4

eJtravel;l +W5
eJdistance;l (3.24)

This cost with relative weighting factors is a generalization of Equation (3.6) and exem-

pli�es the fact that we have given each component cost an equal vote in determining the

total path cost.

If, at any point in the procedure delineated above, the linearized system is found

to be unstable, then the entire candidate path under consideration at that instant may

immediately be discarded. In addition, if the steady-state controllability Grammian in-

dicates that the system is not completely controllable, as evidenced by a zero eigenvalue,

and we desire the system to move in an uncontrollable direction of state-space, as seen by

a non-zero �i value corresponding to the zero eigenvalue, then this candidate path may be

ruled out based on the infeasibility of arriving at one of the waypoints. This entire path

selection procedure is summarized in Algorithm 6.

Algorithm 6 Path Selection Algorithm
for i = 1 to number of candidate paths do
if candidatei exists then
for j = 1 to number of waypoints in candidatei � 1 do
if system unstable at waypoint j or waypoint j is in uncontrollable space then

5: Ignore candidatei
else
Compute cumulative energy for orientation and height changes for candidatei
Compute cumulative energy to travel on candidatei
Compute cumulative distance travelled on candidatei

10: end if
end for

end if
end for
Normalize orientation energy, travel energy, and distance for each candidate path

15: Compute total cost for each candidate path
Select path with minimum cost
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3.5 Command Generator

The function of this block is to generate the optimal input which will drive the

vehicle to the next waypoint under the assumption that we wish to �y along the line-of-

sight path as much as possible. Though there are numerous optimal control methods, this

research is concerned with extending the work on CLC [1] and MPC [9] control schemes to

3-dimensional problems and presenting a minimum e¤ort control technique which makes

use of data obtained during the path selection procedure. While all three of these control

optimization approaches require the speci�cation of a set of waypoints, only MPC imposes

the additional need to generate a reference path between the waypoints. The general

procedure for these three command generation approaches is described here and the details

of a MATLAB
R

implementation of the MPC and minimum e¤ort control techniques will

be given in Chapter 4.

3.5.1 Extremal Input Commanding. Recall that within the CLC optimal con-

trol technique is the desire to minimize the deviation from the line-of-sight path between

waypoints while operating under the assumption that all turns are made at the vehicle�s

maximum rate of turn. In fact, this control optimization method does not directly com-

pute any control inputs; instead the CLC method determines the time to apply one of a

given set of inputs. The speci�c control inputs that make up this set of potential inputs

are completely known a priori, and the chosen input is based on which direction the vehicle

is attempting to turn. However, this simple approach is only valid for a 2-dimensional

problem. In this section, we present the extension to a 3-dimensional scenario and attempt

to show where this process breaks down.

First, we extend the fundamental structure of the work in [1] to the full 3-dimensional

case, in which the position triplet has x, y, and z directions and the control inputs are

heading (	) and �ight path (
path) angles. Within this framework, the system description
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of Equation (2.21) becomes

:
x(t) = s cos(	(t)) cos(
path(t))

:
y(t) = s sin(	(t)) cos(
path(t))

:
z(t) = s sin(
path(t))

:
	(t) = u1(t)

:

path(t) = u2(t) (3.25)

and the maximum control input inequality of Equation (2.22) is expanded to

ku1k � u1;max

ku2k � u2;max (3.26)

However, this set of constraints on the control input is incomplete. In any realizable air

vehicle, there exists a necessary trade-o¤ between turning and climbing performance. For

instance, this relationship may be expressed in terms of a maximum centripetal acceler-

ation, such that the application of both control inputs may not exceed a certain g-load

threshold. Without presenting a form for the exact relationship, we are assured of the

fact that one cannot blindly attempt to apply the maximum control input on both input

channels. Keeping in mind that we are operating with an incomplete set of control input

constraints, we will continue this 3-dimensional extension until the need for additional

system characterization is more apparent.

Our next step is to determine the 3-dimensional version of the system Hamiltonian

H(x(t); u(t); 
0; 
(t)) = 
0 + [
1(t)s cos(	(t)) + 
2(t)s sin(	(t))] cos(
path(t))

+ 
3(t)s sin(
path(t)) + 
4(t)u1(t) + 
5(t)u2(t) (3.27)

and then begin to apply the conditions of Pontryagin�s minimum principle from Equation

(2.18) and the auxiliary inequality condition implied by Equation (2.20). Avoiding the

exercise in simple mathematics, we concentrate on the inequality shown below since it
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provides an excellent indication of insu¢ cient system information

H(x(t); u�(t); 
0; 
(t)) � H(x(t); u(t); 
0; 
(t)); 8u 2 � (3.28)

After inserting the Hamiltonian of Equation (3.27), using the same cost function as in

Equation (2.23), and simplifying the expressions, we arrive at the following equation


4(t)u
�
1(t) + 
5(t)u

�
2(t) � 
4(t)u1(t) + 
5(t)u2(t); 8u 2 � (3.29)

Here is a prime example of the need for a manner to express the trade-o¤ between the two

control inputs. Unlike the results from Equation (2.25) and Equation (2.26), the relation

above does not have a simple speci�c solution.

At this point, the 3-dimensional extension of the CLC control technique must be

deferred until an adequate characterization of the interplay between heading rate and

climb rate is available and a recommendation will be presented in Chapter 5.

3.5.2 Model Predictive Control Commanding. Conceptually, the extension of

model predictive control techniques to a 3-dimensional approach is quite easy. The form of

the non-linear system model of Equation (2.14) and the MPC cost summation of Equation

(2.31) is unaltered. We are able to apply the same general procedure, as outlined for 2-

dimensional problems in [9], to determine the optimal perturbation control input. However,

the complexity of the problem is greatly increased by the addition of a third direction

of motion. In order to complete this 3-dimension extension of the MPC scheme, two

modi�cations to the problem description are required.

The �rst change that must be made is to de�ne the six-degree-of-freedom �ight model

in the form of the general non-linear system of Equation (2.14). Let us assume the state
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and control input vectors are de�ned for a 2-dimensional world as

x =

26666666664

V

pnorth

peast

 

 rate

37777777775
; u =

24throttle
rdrcmd

35 (3.30)

where V is the magnitude of the vehicle�s velocity vector, pnorth and peast are the northward

and eastward positions of the vehicle,  is the yaw angle, and  rate is the rate of change

of the yaw angle. Note that the throttle input is a percentage of the maximum throttle

setting and the rdrcmd input is the commanded rudder de�ection angle. In order to extend

this problem to a 3-dimensional world, the state vector must be augmented to incorporate

the additional states which account for the linear and rotational kinematics in the new

degrees of freedom, and the control input vector must be expanded to include commands

for the remaining control surfaces. This augmentation process modi�es the state and

control input vectors to their generic 3-dimensional de�nitions

x =

266666666666666666666666664

V

pnorth

peast

h

�

�

 

�rate

�rate

 rate

377777777777777777777777775

; u =

26666664
throttle

ailcmd

elecmd

rdrcmd

37777775 (3.31)

where h is the vehicle�s altitude, � is the roll angle, � is the pitch angle, and �rate and

�rate are the rates of change of the roll and pitch angles, respectively. Similar to the

control input vector of Equation (3.30), ailcmd is the commanded aileron de�ection angle
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and elecmd is the commanded elevator de�ection angle. The states de�ned in Equation

(3.31) are not the full set of states that would typically be included for a realistic model

(additional states may be required based on the speci�c controller design), but this state

vector de�nition illustrates the simple fact that the expansion to a fully 3-dimensional

scenario entails a signi�cant increase in the amount of data that must be handled. This

increased complexity propagates itself throughout the MPC structure and generates a much

more computationally burdensome optimization problem.

The secondary, yet equally critical alteration that must occur is to expand the refer-

ence trajectory to incorporate all three dimensions of the vehicle�s position. Although both

changes are necessary, this modi�cation is what really provides the capability of MPC to

be exploited for 3-dimensional control optimization problems. The waypoints that de�ne

the guidance path chosen by Algorithm 6 during the path selection operation in Figure

3.1 provide the endpoints for each segment of the reference trajectory, and one must then

interpolate between the points to determine an appropriate reference trajectory. One

obvious interpolation technique is simply to project the line-of-sight between successive

waypoints. Given the method used to generate the set of waypoints, this LOS projection

guarantees that the reference trajectory will not pass through any of the obstacles.

Despite our best e¤orts, a properly functioning version of the MPC-based optimiza-

tion algorithm was not achieved. Nevertheless, we were able to gain some insight into

possible avenues of investigation for this control generation approach. These recommen-

dations will be detailed in Chapter 5.

3.5.3 Minimum E¤ort Control Commanding. In the typical minimum e¤ort

control setting, the controllability Grammian is used to determine the full set of inputs

which will a¤ect the desired state change while requiring the least amount of energy at

the input. Note that this is not a perturbation control method. These control inputs are

speci�ed by Equation (2.47), which is reprinted below

u�(t) = BT�T (tf � t)W�1
c (tf )x; 0 < t � tf
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Although this basic control optimization technique may be used to guide a system to a

speci�c set of points in state-space, there is no method to predetermine the path that the

state trajectory will follow in between the state vector setpoints. The state trajectory

resulting from the application of a control input generated by minimum e¤ort control

methods may "wander" through state-space before reaching the terminal point. Given

that we desire to avoid obstacles, a speci�c "safe" path must be followed through state-

space and a modi�ed view of minimum e¤ort control is necessary in order to make this

technique a viable option.

This "safe" trajectory has already been determined, as the line-of-sight path between

waypoints, by the waypoint generation and path selection processes. Furthermore, the

optimal set of waypoints was selected by using the controllability Grammian in a manner

based on minimum e¤ort control. Recalling that one of the initial assumptions of this

research is that heading, altitude, and velocity hold autopilots are available, the information

explicitly contained within the chosen set of waypoints may be used to generate the control

inputs directly. In order to travel between two consecutive waypoints, wp
current

and

wp
next

, the speci�c inputs applied to the system are the desired speed, the altitude of

wp
next

, and the horizontal plane heading angle of the vector from wp
current

to wp
next

.

Finally, to ensure that the line-of-sight path is closely followed, the control inputs must be

generated at a su¢ ciently high enough rate. Bearing this in mind, the series of inputs are

computed such that all turns and altitude changes are accomplished in a smooth manner

and the line-of-sight path is closely followed.

3.6 Flight Simulator

Based on our assumptions and the data available from the command generator, a few

modi�cations to the basic simulation model of Figure 2.5 are necessary. The �rst change is

merely the removal of the linear (lin_accel) and rotational (rot_accel) acceleration terms.

Recall that, in the original project for which this model was used [11], these linear and

rotational acceleration terms were included in an e¤ort to evaluate the forces sensed by a

pilot in various �ight conditions and were not used to modify the dynamics of the overall

system. The omission of these six terms is possible since we are not interested in this
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Figure 3.5 Modi�ed simulation model

information and the loss of this data does not degrade the performance of the rest of the

system. Another simple change is the addition of an exit condition to halt the simulation

prematurely when the munition reaches the intended target.

The more signi�cant alterations are in the speci�c input we apply to the system and

the details of the feedback controllers. In general, the input we apply is determined by

the control optimization method we choose to employ, and this choice will force changes to

the feedback controller structure. Since the modi�ed minimum e¤ort control technique is

the only command generation method being implemented in three dimensions, the control

input takes the form of a commanded speed, altitude, and heading. While the controllers

are still autopilots designed to hold the vehicle in a given con�guration, we have rede�ned

the reference values to be the desired speed, altitude and heading, instead of the equilibrium

conditions. This change is required since the original model of Figure 2.5 was designed

to track the equilibrium speed, altitude, and heading values and external inputs were

available to apply changes directly to the actuator de�ection angles. For simplicity, these

autopilots are designed as simple proportional feedback controllers which have constant

gains determined in an ad hoc manner and provide an adequate level of responsiveness.

The new simulation model is shown in Figure 3.5.
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3.7 Summary

In this chapter, we have presented the various innovations of this thesis. Section 3.2

detailed a simple, intuitive method to assess the value of a given target within a multi-target

scenario. Next, Section 3.3 developed the procedure to determine potential waypoints

for the purpose of obstacle avoidance. Section 3.4 then employed minimum e¤ort control

concepts to derive a method to select a desired path from the candidate trajectories de�ned

during the waypoint generation process. The extension of CLC, MPC, and minimum e¤ort

control techniques to three dimensions was presented in Section 3.5. However, functioning

versions of the CLC and MPC methods were not achieved. Finally, Section 3.6 detailed

the adaptation of the simulation model to account for the unique elements of this research.

Given the algorithms and simulation framework developed in this chapter, we are ready

to discuss the test cases and analyze the results of these simulations.
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IV. Simulation Implementation and Results

4.1 Introduction

Throughout this chapter, we present several test cases in an e¤ort to highlight both

the strengths and weaknesses of the path planning and control optimization procedures.

In general, two planned paths are illustrated for each scenario. The �rst path, resulting

from the path selection algorithm developed in Section 3.4 of this research, is known as

the Minimum E¤ort Path (MEP). The other path is the Minimum Distance Path (MDP),

which is obtained by selecting the path with the lowest cumulative distance. Once a

candidate path is selected, a command generator function is used to compute the control

inputs and thus drive the vehicle along the selected path. The MPC algorithm was

originally chosen to perform this function, but due to implementation issues with the

MPC approach, a simpli�ed command generator based on the MEP waypoints is used.

As such, one can envision the problem being decomposed into navigation and control

functions, where the MEP and MDP selection processes represent navigation. The control

methods include the CLC, MPC, and MEP-based command generator techniques. As

stated in Chapter 3, the extremal control (CLC) and model predictive control optimization

approaches are not used in these simulations, but we will discuss the implementation issues

encountered when using the MPC command generator.

We start the analysis with a description of the MATLAB
R

implementation of the

MPC and MEP-based command generator techniques. Following the discussion of imple-

mentation issues, two basic scenarios are presented to demonstrate the simulation environ-

ment. Next, scenarios of the �rst test set are designed to highlight the characteristics of

the path planning algorithm. Finally, the simulations of the second test set are devoted

to the characteristics of the MEP-based control technique. Note that, for now, we assume

the targets are stationary and the target tracking aspect is bypassed.
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4.2 Command Generators

As mentioned above, e¤orts were made to implement the MPC and MEP-based com-

mand generators in MATLAB
R

. The following is a presentation of the implementation

details and a discussion of the issues which arose from each command generation technique.

4.2.1 Model Predictive Control Command Generator. As stated at the end of

Section 3.5.2, a functioning version of the 3-dimensional MPC optimization technique was

not achieved. However, the important aspects of the implementation of this approach

in MATLAB
R

must be noted in order to assist any future e¤orts related to this topic.

Recalling that the general form of this method in three dimensions is identical to the form

of the 2-dimensional problem, we revisit the presentation of the MPC approach in Section

2.3.2. Speci�cally, we focus on Equation (2.33), which is reproduced below

Jk = �T (Y T�Y + UT�U)� + 2[(y
nom

� r)T�Y + uTnom�U ]�

and explain the method to obtain the U and Y matrices.

First, the simpler of the two matrices, U , is formed for a single input by selecting a

set of basis functions. The basis functions are then evaluated at N discrete-time sample

points, where N is the length of the �nite horizon. If Th is the continuous-time interval

for the �nite horizon and Ts is the sample interval, then the exact discrete-time interval

is computed as N = Th
Ts
. Now, for each basis function, we obtain a vector of N values

and, given that we intend to implement this technique with several basis functions and

multiple inputs, we orient the vector so that the dimensions are 1 � 1 �N . For a set of

nbasis basis functions, the U matrix is formed such that the individual vectors constitute

the columns of the matrix and the dimension of U is 1�nbasis�N . When we extend this

to the general case of m inputs, the �nal U matrix is generated by placing identical copies

of the single-input form of U on the main diagonal of a block diagonal matrix and the

dimensions of this �nal matrix are m� (m�nbasis)�N . As an example, for the four input

system de�ned by Equation (3.31) and a set of �ve Laguerre polynomial basis functions,
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the single-input version of the U matrix is given by

U1 =
h
"0 "1 "2 "3 "4

i
(4.1)

where "i is computed using [16]

"i(k) =
ekTs

i!

di[(kTs)
ie�kTs ]

dti
; i = 0 : 4; k = 0 : (N � 1) (4.2)

Note that these " functions are determined by the choice of the basis functions. Finally,

the multi-input version is formulated as

U =

26666664
U1 01�5 01�5 01�5

01�5 U1 01�5 01�5

01�5 01�5 U1 01�5

01�5 01�5 01�5 U1

37777775 (4.3)

where 01�5 is a row vector of �ve zeros and the full dimension of U is 4� 20�N .

Next, we consider the more complex generation of the output relationship matrix,

Y . In Chapter 2 we mentioned that Y is formed by exciting the nonlinear system with a

series of test inputs on a channel by channel basis. Now we explain this process in greater

detail, starting with the formulation of the input to be applied. Since we are working with

a set of basis functions to represent the perturbations about some nominal input, we must

determine the system response to each basis function as subdivisions of the response due

to input channelization. In order to accomplish this task, we form the perturbed input as

uli(k) = ul0(k) + U(k)�i (4.4)

where uli(k) is the l
th input perturbed by the ith basis function at time sample k, ul0(k) is

the lth nominal input at time sample k, U(k) is the U matrix at time sample k, and �
i
is

used to isolate the ith basis function. For example, to isolate the third function in a set
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of �ve basis functions, we use

�
3
=
h
0 0 1 0 0

iT
(4.5)

The nominal input used throughout this research is the equilibrium input values required

for the munition to maintain a given set of trim conditions (speed, heading, and �ight-path

angle). In order to determine the system response to the perturbational component of the

input over the �nite horizon, we must �rst excite the nonlinear system with the perturbed

input and then subtract o¤ the nominal system response. The nominal system response

is obtained by driving the nonlinear system with the nominal input. For the case of four

inputs and �ve basis functions, the nominal output, y0, and the perturbed response, yli,

are computed using the following inputs:

h
u10 u20 u30 u40

iT
=) y0 (4.6)h

u10 u23 u30 u40

iT
=) y23 (4.7)

where we have used the response to the second input perturbed by the third basis function

as an example for yli. Next, we generate the perturbational component of the response by

�yl
i
= yli � y0 (4.8)

and, given the assumption that �y = Y �, we may �nally form the output relationship

matrix. Similar to the U matrix, the Y matrix involves a peculiar dimensionality, such that

the dimensions of the output relationship matrix for a system with n outputs, m inputs,

nbasis basis functions, and a discrete-time horizon of length N are n � (m � nbasis) � N .

The column vector �yl
i
, of dimension n � 1 �N , then becomes column (l � 1) � nbasis + i

in the Y matrix.

Now that we have generated the U and Y matrices, we are ready to address the

optimization routine. The minimization of the cost de�ned by Equation (2.33) is handled

by quadprog, a quadratic programming function available in MATLAB
R

, which solves
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constrained quadratic minimization problems of the form given below

min
x
(0:5 � xT�x+ �Tx); such that Ax � b (4.9)

However, given the unique dimensions of the U and Y matrices, a di¤erent manner of

expressing the cost function is necessary. We �rst rewrite the cost function of Equation

(2.33) in the proper summation notation as

Jk =

k+N�1X
i=k

f�T [Y T (i)�Y (i) + UT (i)�U(i)]� + 2[(y
0
(i)� r(i))T�Y (i) + uT0 (i)�U(i)]�g

(4.10)

where the notation Y (i) refers to the value of the Y matrix at time sample i such that

Y (i) = Y (:; :; i), with similar de�nitions for the U matrix and y
0
, r, and u0 vectors. In

order to cast this cost function in the form of Equation (4.9), we note that the summation

may be collapsed into a single expression by summing the appropriate terms over their

time dimension such that we obtain

�k =

k+N�1X
i=k

[Y T (i)�Y (i) + UT (i)�U(i)] (4.11)

�Tk =
k+N�1X
i=k

[(y
0
(i)� r(i))T�Y (i) + uT0 (i)�U(i)] (4.12)

Jk = �T�k� + 2�
T
k � (4.13)

The cost function, Jk, is now in the format required by quadprog.

However, when we attempt to implement this command generation technique in

MATLAB
R

software, we encounter a major problem. The perturbation input, obtained

by

�u(i) = U(i)� (4.14)

where �u(i) is the perturbational input at time sample i and U(i) is the value of the

U matrix at time sample i, tends to generate illogical control inputs. For example,

most of the test cases used during the development of this command generator resulted in

perturbational inputs for the aileron, elevator, and rudder de�ection angles on the order of

4-5



�3600 �. Clearly an input of this magnitude is not a rational option to apply to a control

surface which has physical de�ection angle limits on the order of �30 �. Nevertheless, the

simulation attempts to apply these control inputs and, since the script-�le which represents

the air vehicle limits the control inputs based on internal saturation values, a system

response is obtained for a short period of time until the operation of the script-�le fails.

The irrational input values appear to be caused by an error in the method used to compute

the � matrix and the �T vector. Once this computational method was corrected, the

perturbational inputs took on more realistic values and the simulation would persist for

a longer period of time. Yet, even when we attempt to �y the munition at a constant

speed in a steady-level con�guration, the script-�le which represents the vehicle�s dynamics

numerically continues to fail in a similar manner. Given that previous research e¤orts

[9, 15, 16] have achieved successful MPC optimization routines in two dimensions, this

problem appears to be caused by the details of our MATLAB
R

implementation of the

six-degree-of-freedom dynamics model.

4.2.2 MEP-based Command Generator. In Section 3.5.3 we presented a modi�ed

minimum e¤ort control scheme that was based on the information provided by the way-

points which constitute the minimum e¤ort path. This MEP-based command generation

process is decomposed into two separate subfunctions. One routine determines when the

current waypoint has been reached and then commands the munition to �y to the next

waypoint along the pre-planned path. The other subfunction generates the actual control

inputs in a manner which produces smooth command sequences. The following discus-

sion presents the details of the MATLAB
R

implementation of the MEP-based command

generator.

First, before any control inputs are computed, we must formulate a method to declare

a waypoint has been reached. Given the near certainty that the actual �ight path will

not pass directly through the waypoint, we are forced to make this declaration based on

the munition�s proximity to the current waypoint. One simple solution to this problem is

to make the decision to �y to the next waypoint when the actual trajectory passes within

a speci�c distance of the current waypoint. However, there is still no guarantee that
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the munition�s trajectory will satisfy this proximity criterion. A more robust solution to

this issue was achieved by monitoring the trend of the distance between the munition and

the current waypoint. Since we expect this distance to be a monotonically decreasing

function of time, the decision to proceed to the next waypoint is made when the distance

at the current time sample is greater than the distance at the previous time sample. In

order to provide an extra level of con�dence, this decision may by easily delayed until the

increasing distance phenomenon is observed over a few consecutive time epochs. Once

the decision is made, due to the nonlinear nature of this six-degree-of-freedom model, we

must recompute the trim conditions for the air vehicle to �y at the new heading angle

and �ight-path angle, as de�ned by the vector from the munition�s current position to the

rede�ned current waypoint.

As stated in Section 3.5.3, the control inputs are obtained directly from the position

data which de�ne the current and previous waypoints. Furthermore, we compute the

control inputs such that we avoid large-magnitude step changes at the inputs. These

smooth-transitioning command sequences are necessary, since the simulation has a ten-

dency to crash when a large-magnitude change to the input is commanded within a single

time sample. Therefore, a simple command generation technique was used to generate

the following input vector:

u =

26664
Vcmd

hcmd

	cmd

37775 (4.15)

where Vcmd is the desired constant speed, hcmd is the desired altitude, and 	cmd is the

desired heading angle. In order to smooth out the hcmd input, we use the munition�s

altitude at the time when the previous waypoint was reached as the starting point for

a straight-line segment which terminates at the altitude of the current waypoint. The

commands at each time sample for this straight-line segment are generated as a simple time

propagation at the desired speed along the �ight-path angle determined by a LOS vector

between the previous and current waypoints. The exact magnitude of the incremental

change in altitude is determined by the sample interval, vehicle speed, and �ight-path
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Table 4.1 Starting location and target position for basic demonstration
North (ft) East (ft) Altitude (ft)

Munition Start 0 0 1000

Target Location 20000 0 0

angle

�hcmd = TsVcmd sin(
path) (4.16)

For the transitions on the 	cmd input, we employ a static turn rate value, chosen in an

ad hoc manner, to compute small-magnitude incremental changes to the input at each

time sample. For example, in a discrete-time simulation with a time step of 0:01 s and a

static turn rate of 30 degrees per second, the MEP-based command generator computes

incremental heading changes of, at most, 0:3 � at each time sample. We are now ready

to present the simulation scenarios, starting with a basic demonstration of the simulation

environment.

4.3 Basic Demonstration

Before we address the various test cases, we �rst demonstrate the simulation envi-

ronment through two basic scenarios in which we can predict the selected path. In these

two examples, we place obstacles in a manner that forces the minimum-distance path and

the minimum-e¤ort path to be identical. These examples will also serve the purpose of

demonstrating the typical situations in which other researchers [9] have used model pre-

dictive control in two dimensions. Even though we have not been able to replicate this

MPC command generation technique, we have at least formulated a method to produce

the waypoints and reference trajectories required by the MPC approach. For simplicity,

both examples will use the same initial and termination positions as given in Table 4.1.

In the �rst situation, we construct the scene by placing a short, wide obstacle directly

in between the munition and the target in order to force the path planner to choose the

up-and-over path. This simple scene is shown with all the candidate paths in Figure 4.1

where the red path is the chosen MDP/MEP candidate, and the blue paths are the other

non-selected candidate paths. Given the de�nition of the path selection cost function in
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Table 4.2 Path selection cost values for scenario in which trajectory is forced up-and-
over the obstacle - Path 1 is up-and-over, Paths 2 and 3 are around, Paths 4
and 5 are up-and-around

Path #1 Path #2 Path #3 Path #4 Path #5
Orientation 0:208203 0:00143559 0:001436 0:394462 0:394462
Travel 0:200385 0:198368 0:198368 0:201438 0:201438
Distance 0:07008 0:370164 0:370164 0:094796 0:094796

Total Cost 0:478668 0:569968 0:569968 0:690696 0:690696
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Figure 4.1 Scenario in which trajectory was forced up-and-over the obstacle - red path
is MEP/MDP and blue paths are non-selected candidates

Equations (3.6) and (3.22), we expect the around paths to have large values for Jdistance and

Jtravel. Furthermore, knowing that the up-and-over path will be the minimum-distance

path, we anticipate this path will have the smallest value for Jdistance. The individual

cost values for each path are shown in Table 4.2 and the trend for Jdistance matches our

expectation.

The second example is generated by using a tall, thin obstacle in an e¤ort to force

the path planner to choose the around path. This scenario is depicted in Figure 4.2 where

the red path is the chosen MDP/MEP candidate, the magenta paths are candidate paths

with unstable systems, and the blue paths are the remaining non-selected candidate paths.

A discussion of these unstable paths is presented in Section 4.4.2. Similar to the previous

example, we expect the around paths to have the minimum value for Jdistance. Since the
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Figure 4.2 Scenario where the selection of the around path is forced - red path is
MEP/MDP, magenta paths are unstable/infeasible, and blue path is an un-
selected candidate

up-and-over and up-and-around paths produce unstable systems during the initial climb

to the top of the obstacle, these three candidate paths must be ignored and are given

component and total costs equal to zero. Table 4.3 shows the component and total costs

for each candidate path in this example.

4.4 Test Set 1: Path Planning Characteristics

4.4.1 Computational Complexity. One of the major shortcomings of this mini-

mum e¤ort control based approach is the computational complexity of the path planning

algorithm. During the development of the waypoint generation procedure in Section 3.3,

it was observed that the maximum number of potential paths grows exponentially based

on the number of obstacles blocking the LOS path from the munition to the target. Figure
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Table 4.3 Path selection cost values for scenario in which trajectory is forced around the
obstacle - Path 1 is up-and-over, Paths 2 and 3 are around, Paths 4 and 5 are
up-and-around

Path #1 Path #2 Path #3 Path #4 Path #5
Orientation 0 0:499999 0:500001 0 0
Travel 0 0:5 0:5 0 0
Distance 0 0:5 0:5 0 0

Total Cost 0 1:499999 1:500001 0 0

Table 4.4 Path complexity data
twp_gen tpath_sel npaths

Single-Obstacle Case 0:32 s 31:586 s 5

Two-Obstacle Case 5:138 s 235:944 s 25

Three-Obstacle Case 19:328 s 1622:724 s 117

4.3 depicts the evolution of candidate paths when the munition must avoid an increasing

number of obstacles.

In Table 4.4, we can clearly see the rapid growth in the number of candidate paths,

npaths, that are passed to the path selection routine. Another indication of the compu-

tational complexity inherent to this path planning algorithm is the amount of time spent

generating waypoints, twp_gen, and selecting the minimum e¤ort path, tpath_sel. Since the

minimum e¤ort path planning algorithm used in these simulations was not implemented

with any deliberate attempt at e¢ ciency, the exact amount of time required by these

tasks is not of interest. However, the key point to notice is the exponential growth in

the amount of time necessary for the waypoint generation and path selection functions to

complete their tasks as shown in Figure 4.4. Notice that the number of candidate paths

grows by a factor of 5 for each obstacle that must be avoided, while the associated path

selection time grows by a factor of 7. Methods to mitigate this exponential growth are a

subject of future research.

4.4.2 Unstable Paths. The primary advantage of this path planning technique is

the built-in capability to guide the munition along a path that is assured to be feasible,

in terms of system stability and controllability, while the minimum distance approach to

path planning cannot make such an assurance. There is no guarantee that the minimum
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Figure 4.3 Increasing path complexity - red path is MEP and black path is MDP
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Figure 4.4 Trend data for growth of waypoint generation and path selection times

distance path will lead to a stable system throughout the munition�s �ight. One such

instance is created by modifying the scenario depicted in Figure 4.3 and moving the target�s

position closer to the obstacle. Graphically, this is shown in Figure 4.5.

In order to demonstrate the unstable system, we bypass the path selection function

and force the munition to traverse the minimum distance path. The result of �ying the

munition along this path is shown in Figure 4.6 and, by zooming in on the boxed area,

Figure 4.7 shows that the system quickly becomes unstable after reaching the waypoint

on the far side of the obstacle. One of the main bene�ts of the minimum e¤ort path

planning algorithm is exempli�ed by this test case. The MEP algorithm has the inherent

ability to predict the emergence of system instabilities on each of the potential paths

and then ignore these unstable paths. This prediction capability is realized during the

controllability Grammian computation of the path selection process, wherein we compute

a linearized model of the closed-loop system. In order to anticipate an unstable system, we

investigate the eigenvalues of the closed-loop system dynamics matrix and, using classical

stability de�nitions [14], declare the system to be unstable if any of the eigenvalues are

greater than zero.
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Figure 4.5 Scenario where MDP produces unstable system
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Figure 4.6 Unstable system response using MDP
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Figure 4.7 Zoomed in view of unstable system response using MDP

4.5 Test Set 2: MEP-based Control Characteristics

4.5.1 Target Location Relative to Obstacles. One situation in which the minimum

e¤ort control approach to input generation is highly e¤ective is when the obstacles and

the target are su¢ ciently separated. An example of this case is shown in Figure 4.8

where the red path is the MEP, the black path is the MDP, and the blue path is the

actual �ight trajectory. Notice that the �ight trajectory misses all of the obstacles and

terminates at the target (within a given threshold distance). This small threshold value

is necessary since the target has its own size characteristics and is not simply a point-

mass target. Through this scenario, we see that the minimum e¤ort control technique is

capable of generating control inputs that permit the munition to impact the target. This

is only possible when the munition has enough time to complete the heading changes after

reaching each waypoint.

For the case of a target located near an obstacle, the minimum e¤ort control technique

for command generation performs very poorly. An example of this case is shown in Figure

4.9 where the red path is the MEP, the black path is the MDP, and the blue path is the

actual �ight trajectory. Even though this control algorithm does not drive the munition

into any of the obstacles, minimum e¤ort control fails to �y the munition to the target
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Figure 4.8 Target in the open

since there is not enough space and time to complete the turn before the munition passes

the target. Note that in this case, the MDP solution is not a viable alternative since it

would produce an unstable system in a manner similar to the scenario of Section 4.4.2.

4.5.2 Narrow Alley Scenario. A severe downside to the minimum e¤ort control

command generation method is that it does not force the munition back onto the LOS

trajectory after a heading change is completed. While this is not a major cause for

concern in situations where the obstacles are spaced far apart, as the separation between

obstacles shrinks, the likelihood of the munition impacting an obstacle during and after

turns continually increases.

An example of this narrow alley scenario is depicted in Figure 4.10 where the MEP

solution (red path) instructs the munition to travel through the small corridor between

two obstacles. In order to better illustrate this problem, we zoom in on the boxed region.

This enlarged view is presented in Figure 4.11 where we can clearly see the actual �ight

trajectory (the blue path) passing through the obstacle. Again, this is due to the fact that

the munition cannot execute instantaneous turns and minimum e¤ort control commanding
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Figure 4.9 Target located close to obstacle
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Figure 4.10 Narrow alley scenario
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Figure 4.11 Zoomed in view of narrow alley scenario

does not guide the munition back to the unobstructed line-of-sight path between waypoints.

The development of alternative command generators is a subject for future research.

4.5.3 Target Designation Change Scenario. A case of great interest for the multi-

target situation is a demonstration of the minimum e¤ort control method in response to a

change in the target designation during the munition�s �ight. An example of this situation

is shown in Figure 4.12 where the red path is the �nal MEP, the blue path is the actual

�ight trajectory, and the magenta path is the initial MEP. The starting location for the

munition and both target positions are given in Table 4.5. We can clearly see that the path

planning algorithm accomplishes its task of generating an updated MEP in response to the

change in the termination point. However, the control input generation scheme must now

adapt to this newly planned path and �y the munition toward a new target point. The

control algorithm is just as capable of completing this task as it would be if the scenario

had started with this new target. We still need to be concerned with the potential for

impacting an obstacle as presented in the narrow-alley scenario and the amount of space

required to complete a turn as shown in the case of a target located close to an obstacle.

Overall, the minimum e¤ort path planning algorithm is adaptable to target reassignment.
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Table 4.5 Starting location for munition and target positions for target designation
change scenario

North (ft) East (ft) Altitude (ft)
Munition Start 0 0 1000

Initial Target 30000 0 0

Updated Target 24000 �7500 0
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Figure 4.12 Target designation change scenario
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4.6 Summary

In this chapter, we described the implementation of the command generators in

MATLAB
R

and analyzed the results of various test scenarios. Speci�cally, Section 4.2

detailed the implementation of the MPC and MEP-based command generation techniques

and discussed the major issues which precluded the MPC approach from being employed

in the simulations. Next, Section 4.3 presented a simple demonstration of the simulation

environment in which the scene was constructed such that the munition is forced to select

either the up-and-over or around paths. Next, Section 4.4 investigated the characteris-

tics of the MEP path planning algorithm, highlighting the rapid growth in computational

complexity and the inherent ability of this algorithm to predict the emergence of system

instabilities. Finally, Section 4.5 tested the capability of the MEP-based command gen-

eration approach in various situations of interest, to include the case of a large change to

the target�s location while the munition is in mid-�ight. We are now ready to conclude

this research and provide recommendations for future research e¤orts on this topic.
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V. Conclusions and Recommendations

5.1 Research Goal

As stated in Chapter 1, the goal of this research was to develop a path planning al-

gorithm that provides an obstacle avoidance function in 3-dimensional space and to inves-

tigate the application of model predictive control, circle-line-circle control, and minimum

e¤ort control optimization techniques in this 3-dimensional setting. Finally, the overall

guidance and control scheme must operate in an environment in which the designated

target is subject to change.

5.2 Conclusions

The path planning algorithm developed by this research was segmented into two

functions. First, the waypoint generation routine generates sets of waypoints that de�ne

candidate paths in a manner that guarantees obstacle avoidance along the line-of-sight path

between successive waypoints. Next, a path selection procedure, based on the concept

of controllability Grammians, chose the candidate path which requires the least amount

of control input energy to traverse. This path planning method has proved itself to

be e¤ective at producing guidance paths that are free of obstructions. Additionally,

the path chosen by this algorithm is also guaranteed to be feasible. This assurance

is possible since the controllability Grammian approach to path selection facilitates the

identi�cation of unstable systems and the detection of attempts to move the system in

an uncontrollable direction of the state-space. However, there is a large overhead cost in

terms of computational time required by this method, and this cost increases exponentially

with the number of obstacles that must be avoided. One signi�cant shortcoming of this

path planning algorithm, though it appears to be caused by the implementation method,

is that it has a strong bias towards �ying at lower altitudes, making the selection of the up-

and-over path a very rare occurrence. A suggested method for dealing with this problem

is presented in Section 5.3.4.
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In Chapter 3, we attempted to extend the MPC and CLC optimization techniques

to 3-dimensional problems. While both of these e¤orts did not achieve the intended level

of success, we have gained insight into how the extension may be completed.

For the model predictive control optimization scheme, we completed the theoretical

extension of the problem in [9, 15] to three dimensions but encountered numerous failures

during the implementation of this command generation method. Two e¤orts were neces-

sary in order to accomplish the extension of MPC to 3-dimensions. First, the dimensions

of the matrices and vectors required by the quadratic programming optimization technique

had to be greatly increased in order to accommodate the larger dimensions of the air ve-

hicle�s system model. As a complement to this �rst modi�cation, the reference trajectory

had to be speci�ed in three dimensions in order to take full advantage of this optimization

method. Unfortunately, the implementation of this MPC approach in MATLAB
R

, as

shown in Section 4.2.1, never produced meaningful results. Nevertheless, once we achieve

a functioning version of MPC in two dimensions, the 3-dimensional implementation will be

realized by simply replacing the 2-dimensional system with the �ight model and reference

path de�ned in three dimensions.

In the case of the extremal control law of the CLC approach, we �nd that an addi-

tional relationship is required in order to facilitate a trade-o¤ between turn rate and pitch

rate. A simple maximum turn rate constraint was su¢ cient in the 2-dimensional problem

of [1] because it was assumed that the air vehicle maintained a speci�c altitude throughout

its �ight. When we relax this assumption and allow the vehicle to be free to move in the

full 3-dimensional space, we obviously need to place a constraint on the maximum pitch

rate as well as the turn rate. Moreover, given that the vehicle�s three axes of motion are

not decoupled, a third constraint must be invoked to describe the coupling between turn

rate and pitch rate.

Finally, the results of applying input commands generated by the minimum e¤ort

control technique were discussed in Section 4.5. Through simulated target engagement

scenarios, we have determined that this input generation method is an inadequate option.

In general, the minimum e¤ort control technique is not useful for this class of problem,

since it does not have the ability to follow a desired path between waypoints. The negative
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impact of this limitation varies based on the setup of the scenario under consideration. For

cases in which the target is located close to a large heading change, we simply �y past the

target before the turn is completed, but at least the munition is able to continue to engage

targets. In the more severe case of a guidance path which attempts to �y the munition

along a narrow corridor between obstacles, we may actually fail to achieve the obstacle

avoidance requirement and �y the munition into the side of a mountain.

5.3 Recommendations

Given the successes and failures of this research, several recommendations can be

made for future e¤orts on this topic.

5.3.1 CLC Optimization in 3 Dimensions. As stated in Section 3.5.1, the exten-

sion of the CLC (extremal) control optimization technique is incomplete. In order to �nish

this extension, a relationship must be established between turn rate and pitch rate. The

requirement for this relationship is motivated by the fact that motion in the horizontal and

vertical planes of the air vehicle are not fully decoupled. For example, when the munition

attempts to execute a horizontal coordinated turn, the air vehicle is forced into a dive

unless an intentional e¤ort is made to counteract this e¤ect. While it is known that this

relationship exists, the exact (or even an approximate) form of the relationship is unknown.

Once this trade-o¤ between turn rate and pitch rate is characterized, the extension of the

CLC control optimization technique may be completed in a manner similar to [1].

5.3.2 MPC Implementation. As shown throughout this research, the MATLAB
R


implementation of the MPC optimization technique is �awed, such that the simulation

cannot even complete a �ight along steady-level path. The notion that the �aw resides

within this speci�c implementation is supported by the fact that other researchers [9, 15]

have been successful in using the MPC technique. Bearing this in mind, it would be

bene�cial to work on coding a 2-dimensional problem properly and then expand the utility

of this technique to 3-dimensional problems via the method presented in this thesis.
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5.3.3 Enhanced Waypoint Generation Technique. The waypoint generation ap-

proach utilized throughout this research is a simple method designed to facilitate the

investigation of the minimum e¤ort path selection technique. A desired enhancement for

the waypoint generation function is to allow for a terrain-following feature so that the ve-

hicle may remain close to the ground and avoid detection. In order to realize this feature,

we would seek to �y at a low altitude as often as possible and, when we are forced to

a higher altitude, to execute climbing maneuvers at the maximum reasonable �ight-path

angle. This improvement would also require an alteration to the relative weighting values

in the cost computation.

5.3.4 CLC Assistance to Waypoint Generator. The CLC command generation

method is a very intuitive approach and, once the extension to 3 dimensions is complete,

elements of the CLC optimizations technique may be used to augment the quality of the

path planning process. Speci�cally, the details of the �-trajectories dictate where the

waypoint can be placed, relative to the corner of the obstacle, in order to ensure that the

munition�s actual trajectory does not impact an obstacle when the control inputs drive the

trajectory away from the LOS path during heading changes.

5.3.5 Remove Altitude Bias from Energy Computation. The structure of the lin-

earized model used for the controllability Grammian computation leads to an inherent bias

towards �ying at low altitudes. This happens because the de�nition of the control input

vector contains an element for absolute altitude and a squared altitude value will become

involved in any control input energy computation. Additionally, the control input vector

composed of elements for speed, altitude, and heading does not provide an accurate repre-

sentation of the control energy since these three inputs are actually pseudo inputs. A more

logical choice, would be to minimize the control energy for the control input vector (throt-

tle setting and 3 actuator de�ection angles) that is applied to the non-linear air vehicle

model. This change can be achieved by altering the structure of the model�s input control

vector and redesigning the controller to meet stability and performance requirements.

5-4



5.3.6 Situational Logic for Target Designation Change Scenario. In the target

designation change scenario, we noted that the path planning algorithm was able to react to

the updated target location. However, as shown in Figure 4.12, the munition is susceptible

to �ying past the target. For this research, we designated this situation as a failed

engagement and halted the simulation. A desired alternative to this approach is to allow

the munition to either search for a new target or to attempt a "second pass" against the

current target. These two alternative options may be implemented by using situation-

based logic to determine the appropriate coarse of action and, if necessary, a modi�ed

version of the path planning algorithm to determine the reference trajectory for a "second

pass" engagement.

5.3.7 Streamline Simulation Code for E¢ ciency. Finally, an e¤ort needs to

be made to clean up the MATLAB
R

code implementation in order to streamline the

path planning algorithm. One major step is to store the candidate paths in a branching

tree structure, instead of a growing length list, so that we are able to avoid redundant

computations when generating the path cost for the path selection process. Another

major focus ares is to prune o¤ candidate paths earlier in the algorithm in an e¤ort to

reduce the number of unrealistic paths which must be maintained and evaluated throughout

the simulation. These two courses of action could signi�cantly reduce the computation

complexity of the path selection algorithm.
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